-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgaussian_ddpm.py
376 lines (277 loc) · 14.3 KB
/
gaussian_ddpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import math
from random import random
from functools import partial
from collections import namedtuple
import pywt
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torchvision import transforms as T
from einops import rearrange, reduce
from PIL import Image
import numpy as np
from tqdm.auto import tqdm
from utils.helper import maybe_unnormalize_to_zero_to_one, maybe_normalize_to_neg_one_to_one, default, extract, identity
# constants
ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
def linear_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)
def cosine_beta_schedule(timesteps, s = 0.008, shift=False, d=64):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps, dtype = torch.float64)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
if shift:
# shift schedule
# As proposed in "simple diffusion: End-to-end diffusion for high resolution images"
alphas_cumprod = torch.sigmoid( torch.log( (64/d)**2 * (alphas_cumprod/(1-alphas_cumprod)) ) )
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
class GaussianDiffusion(nn.Module):
def __init__(
self,
model,
*,
image_size,
timesteps = 1000,
sampling_timesteps = None,
loss_type = 'l1',
objective = 'pred_noise',
beta_schedule = 'cosine',
ddim_sampling_eta = 1. ,
clip_denoised = True,
clip_max = 1,
clip_min = -1,
normalization= True, # whether normalize to [-1, 1] at training or denormalize at sampling.
channels = 3,
):
super().__init__()
# assert not (type(self) == GaussianDiffusion and model.channels != model.out_dim)
# assert not model.random_or_learned_sinusoidal_cond
self.model = model
self.channels = channels
self.normalization = normalization
self.image_size = image_size
self.objective = objective
self.clip_denoised = clip_denoised
self.clip_max = clip_max
self.clip_min = clip_min
assert objective in {'pred_noise', 'pred_x0', 'pred_v'}, 'objective must be either pred_noise (predict noise) or pred_x0 (predict image start) or pred_v (predict v [v-parameterization as defined in appendix D of progressive distillation paper, used in imagen-video successfully])'
if beta_schedule == 'linear':
betas = linear_beta_schedule(timesteps)
elif beta_schedule == 'cosine':
betas = cosine_beta_schedule(timesteps)
else:
raise ValueError(f'unknown beta schedule {beta_schedule}')
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.loss_type = loss_type
# sampling related parameters
self.sampling_timesteps = default(sampling_timesteps, timesteps) # default num sampling timesteps to number of timesteps at training
assert self.sampling_timesteps <= timesteps
self.is_ddim_sampling = self.sampling_timesteps < timesteps
self.ddim_sampling_eta = ddim_sampling_eta
# helper function to register buffer from float64 to float32
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))
register_buffer('alphas', alphas)
register_buffer('betas', betas)
register_buffer('alphas', alphas)
register_buffer('alphas_cumprod', alphas_cumprod)
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
register_buffer('posterior_variance', posterior_variance)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def predict_v(self, x_start, t, noise):
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise -
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * x_start
)
def predict_start_from_v(self, x_t, t, v):
return (
extract(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def model_predictions(self, x, t, x_self_cond = None, clip_x_start = False):
model_output = self.model(x, t, y=x_self_cond)
maybe_clip = partial(torch.clamp, min = self.clip_min, max = self.clip_max) if clip_x_start else identity
if self.objective == 'pred_noise':
pred_noise = model_output
x_start = self.predict_start_from_noise(x, t, pred_noise)
x_start = maybe_clip(x_start)
elif self.objective == 'pred_x0':
x_start = model_output
x_start = maybe_clip(x_start)
pred_noise = self.predict_noise_from_start(x, t, x_start)
elif self.objective == 'pred_v':
v = model_output
x_start = self.predict_start_from_v(x, t, v)
x_start = maybe_clip(x_start)
pred_noise = self.predict_noise_from_start(x, t, x_start)
return ModelPrediction(pred_noise, x_start)
def p_mean_variance(self, x, t, clip_denoised = True):
preds = self.model_predictions(x, t, clip_x_start=False)
x_start = preds.pred_x_start
if clip_denoised:
x_start.clamp_(self.clip_min, self.clip_max)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start = x_start, x_t = x, t = t)
return model_mean, posterior_variance, posterior_log_variance, x_start
@torch.no_grad()
def p_sample(self, x, t: int, x_self_cond = None):
b, *_, device = *x.shape, x.device
batched_times = torch.full((x.shape[0],), t, device = x.device, dtype = torch.long)
model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = batched_times,
x_self_cond = x_self_cond,
clip_denoised = self.clip_denoised)
noise = torch.randn_like(x) if t > 0 else 0. # no noise if t == 0
pred_img = model_mean + (0.5 * model_log_variance).exp() * noise
return pred_img, x_start
@torch.no_grad()
def p_sample_loop(self, shape):
batch, device = shape[0], self.betas.device
img = torch.randn(shape, device=device)
x_start = None
for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps, disable= (str(device) != "cuda:0") ):
self_cond = x_start if self.self_condition else None
img, x_start = self.p_sample(img, t, self_cond)
img = maybe_unnormalize_to_zero_to_one(img, self.normalization)
return img
@torch.no_grad()
def ddim_sample(self, shape):
batch, device, total_timesteps, sampling_timesteps, eta, objective = shape[0], self.betas.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta, self.objective
times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1) # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
maybe_clip = partial(torch.clamp, min = self.clip_min, max = self.clip_max) if self.clip_denoised else identity
x_start = None
img = torch.randn(shape, device = device)
for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step', disable= (str(device) != "cuda:0") ):
time_cond = torch.full((batch,), time, device=device, dtype=torch.long)
pred_noise, x_start, *_ = self.model_predictions(img, time_cond, clip_x_start = self.clip_denoised)
if time_next < 0:
# x0
img = x_start
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(img)
img = x_start * alpha_next.sqrt() + \
c * pred_noise + \
sigma * noise
img = maybe_unnormalize_to_zero_to_one(img, self.normalization)
return img
@torch.no_grad()
def sample(self, batch_size = 16):
image_size, channels = self.image_size, self.channels
# print(image_size, channels)
sample_fn = self.p_sample_loop if not self.is_ddim_sampling else self.ddim_sample
samples = sample_fn((batch_size, channels, image_size, image_size))
return samples
@torch.no_grad()
def interpolate(self, x1, x2, t = None, lam = 0.5):
b, *_, device = *x1.shape, x1.device
t = default(t, self.num_timesteps - 1)
assert x1.shape == x2.shape
t_batched = torch.stack([torch.tensor(t, device = device)] * b)
xt1, xt2 = map(lambda x: self.q_sample(x, t = t_batched), (x1, x2))
img = (1 - lam) * xt1 + lam * xt2
for i in tqdm(reversed(range(0, t)), desc = 'interpolation sample time step', total = t):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long))
return img
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def loss_fn(self, noise, x_start, t, model_out, mask=None):
if self.loss_type == 'l1':
ls_fn = F.l1_loss
elif self.loss_type == 'l2':
ls_fn = F.mse_loss
else:
raise ValueError(f'invalid loss type {self.loss_type}')
if self.objective == 'pred_noise':
target = noise
elif self.objective == 'pred_x0':
target = x_start
elif self.objective == 'pred_v':
v = self.predict_v(x_start, t, noise)
target = v
else:
raise ValueError(f'unknown objective {self.objective}')
# prepare targets
if getattr(self.model, "final_layer", None) :
target = target
else:
extras = self.model.extras
target = rearrange(target, "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=self.model.patch_size, p2=self.model.patch_size)
B, N, C = target.shape
target = target[~mask[:, extras:]].reshape(B, -1, C)
loss = ls_fn(model_out, target, reduction = 'none')
loss = reduce(loss, 'b ... -> b (...)', 'mean')
return {
# tensor
"loss": loss.mean(),
}
def p_losses(self, x_start, t, mask=None, noise=None, label=None, **kwargs):
b, c, h, w = x_start.shape
noise = default(noise, lambda: torch.randn_like(x_start))
# noise sample
x = self.q_sample(x_start = x_start, t = t, noise = noise)
# predict and take gradient step
model_out = self.model(x, t, mask=mask, y=label, **kwargs)
return noise, model_out
def forward(self, batch, *args, **kwargs):
img, mask = batch[0], batch[1]
mask = mask.flatten(1).to(torch.bool)
b, c, h, w, device, img_size, = *img.shape, img.device, self.image_size
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
x_start = maybe_normalize_to_neg_one_to_one(img, self.normalization)
_params = {
"label": batch[2] if len(batch) > 2 else None
}
t = torch.randint(0, self.num_timesteps, (b,), device=device).long()
noise, model_out = self.p_losses(x_start, t, mask, **_params)
loss = self.loss_fn(noise, x_start, t, model_out, mask=mask)
return loss