-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
178 lines (132 loc) · 5.92 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import argparse
import random
import numpy as np
from accelerate import Accelerator
from accelerate import DistributedDataParallelKwargs
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torchvision.utils import save_image
from gaussian_ddpm import GaussianDiffusion
from models import MaskedUViT
from utils.config import parse_yml, combine
from utils.helper import maybe_unnormalize_to_zero_to_one
def parse_terminal_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="path to config file")
parser.add_argument("--overwrite", default="command-line", type=str, help="overwrite config/command-line arguments when conflicts occur")
parser.add_argument("--bs", type=int, help="batch size used in evaluation")
parser.add_argument("--total_samples", type=int, default=3000, help="samples to generate")
parser.add_argument("--sampling_steps", type=int, default=250, help="DDIM sampling steps")
parser.add_argument("--ddim_sampling_eta", type=float, default=1.0, help="DDIM sampling eta coefficient")
parser.add_argument("--output", nargs="+", help="list of output path to save images")
parser.add_argument("--ckpt", nargs="+", help="list of path to model checkpoint")
return parser.parse_args()
class Sampler(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, *args, **kwargs):
return self.model.sample(
*args,
**kwargs
)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def build_model(args):
name = args.network["name"]
if name == "maskdm":
return MaskedUViT(**args.network)
else:
raise NotImplementedError(f"Unsupported network type: {name}")
def save_img_onebyone(images_tensor, output_path, name):
for i in range(images_tensor.shape[0]):
save_image(images_tensor[i], os.path.join(output_path, name+f"_{i}.png"))
@torch.no_grad()
def evaluation():
mp.set_start_method("spawn")
accelerator = Accelerator(
split_batches = True, # if True, then actual batch size equals args.batch_size
mixed_precision = 'fp16',
kwargs_handlers = [DistributedDataParallelKwargs(find_unused_parameters=True)]
)
accelerator.native_amp = True
setup_for_distributed(accelerator.is_main_process)
# parse terimanl/config file arguments
args = parse_terminal_args()
config = parse_yml(args.config)
if config is not None:
args = combine(args, config)
device = accelerator.device
timesteps = 1000 # trained model time steps
evalutation_batch_size = args.bs # size:bs 224:14
subprocess = str(accelerator.process_index)
# prepare model
model = build_model(args)
print(f"normalizataion: {getattr(args.dataset, 'NORMALIZATION', True)}")
diffusion_model = GaussianDiffusion(
model,
image_size = args.network["img_size"],
timesteps = timesteps, # number of steps
sampling_timesteps = getattr(args, "sampling_steps", 250), # number of sampling timesteps (using ddim for faster inference [see citation for ddim paper])
ddim_sampling_eta = getattr(args, "ddim_sampling_eta", 1), # eta coefficient of DDIM sampling
clip_denoised = getattr(args, "clip_denoised", True),
clip_max = getattr(args, "clip_max", 1),
clip_min = getattr(args, "clip_min", -1),
normalization = getattr(args.dataset, "NORMALIZATION", True),
loss_type = 'l2', # L1 or L2
channels = args.network.get("in_chans", 3),
)
diffusion_model.to(device)
diffusion_model.eval()
dm_sampler = Sampler(diffusion_model)
# speedup sampling with mixed precision
dm_sampler = accelerator.prepare(dm_sampler)
# load model weights sequentially
for i, ckpt in enumerate(args.ckpt):
total_samples = args.total_samples
exist_samples = len(os.listdir(args.output[i]))
total_samples -= exist_samples
num_processes = accelerator.num_processes
while total_samples % num_processes != 0:
total_samples += 1
print(f"Total samples: {total_samples}")
current_samples = total_samples // num_processes // evalutation_batch_size
last = (total_samples// num_processes) % evalutation_batch_size
print(f"Loading pretrained EMA weights: {ckpt}")
if ckpt != "":
raw_state_dict = torch.load(ckpt, map_location="cpu")["ema"]
state_dict = {}
for k,v in raw_state_dict.items():
# in checkpoint[ema], there are two sets of paramters that start with:
# oneline_model.
# ema_model.
if k.startswith("ema_model"):
k = k[10:] # remove prefix: ema_model.
state_dict[k] = v
missing_key, unexpected_key = accelerator.unwrap_model(dm_sampler).model.load_state_dict(state_dict, strict=False)
print("missing keys: ",missing_key)
print("unexpected keys: ",unexpected_key)
else:
print("empty checkpoint")
output_path = args.output[i]
batch_size_lst = [evalutation_batch_size for i in range(current_samples)]
if last:
batch_size_lst += [last]
# start sampling
for j, bs in enumerate(batch_size_lst):
samples = diffusion_model.sample(batch_size=bs)
save_img_onebyone(samples, output_path, f"sample_{subprocess}_{random.random()}")
accelerator.wait_for_everyone()
if __name__ == "__main__":
evaluation()