diff --git a/modules/Statistics/Statistics.Rmd b/modules/Statistics/Statistics.Rmd index 51e25b7a0..66e13dfc5 100644 --- a/modules/Statistics/Statistics.Rmd +++ b/modules/Statistics/Statistics.Rmd @@ -110,6 +110,8 @@ cor.test(x, y = NULL, alternative(c("two.sided", "less", "greater")), ## Correlation {.small} +Using the Charm City Circulator data + ```{r cor1, comment="", message = FALSE} circ <- read_csv("https://jhudatascience.org/intro_to_r/data/Charm_City_Circulator_Ridership.csv") head(circ) diff --git a/modules/Statistics/lab/Statistics_Lab.Rmd b/modules/Statistics/lab/Statistics_Lab.Rmd index a67cf4965..d2853f928 100644 --- a/modules/Statistics/lab/Statistics_Lab.Rmd +++ b/modules/Statistics/lab/Statistics_Lab.Rmd @@ -13,7 +13,7 @@ knitr::opts_chunk$set(echo = TRUE) ### 1.1 -Load the packages needed in this lab. Then, read in the following child mortality data. Assign it to the "mort" variable. Change its first column name from `...1` into `country`. You can find the data here: https://jhudatascience.org/intro_to_r/data/mortality.csv +Load the packages needed in this lab. Then, read in the following child mortality data by country. Assign it to the "mort" variable. Change its first column name from `...1` into `country`. You can find the data here: https://jhudatascience.org/intro_to_r/data/mortality.csv. Note that the data has lots of `NA` values - don't worry if you see that. @@ -66,7 +66,7 @@ Perform a t-test to determine if there is evidence of a difference between child ### 2.1 -Read in the Kaggle cars auction dataset. Assign it to the "cars" variable. You can find the data here: http://jhudatascience.org/intro_to_r/data/kaggleCarAuction.csv. +Read in the Kaggle used car auction dataset (https://www.kaggle.com/datasets/tunguz/used-car-auction-prices). Assign it to the "cars" variable. You can find the data here: http://jhudatascience.org/intro_to_r/data/kaggleCarAuction.csv. ```{r 2.1response} diff --git a/modules/Statistics/lab/Statistics_Lab_Key.Rmd b/modules/Statistics/lab/Statistics_Lab_Key.Rmd index a6040e139..806141268 100644 --- a/modules/Statistics/lab/Statistics_Lab_Key.Rmd +++ b/modules/Statistics/lab/Statistics_Lab_Key.Rmd @@ -13,7 +13,7 @@ knitr::opts_chunk$set(echo = TRUE) ### 1.1 -Load the packages needed in this lab. Then, read in the following child mortality data. Assign it to the "mort" variable. Change its first column name from `...1` into `country`. You can find the data here: https://jhudatascience.org/intro_to_r/data/mortality.csv +Load the packages needed in this lab. Then, read in the following child mortality data by country. Assign it to the "mort" variable. Change its first column name from `...1` into `country`. You can find the data here: https://jhudatascience.org/intro_to_r/data/mortality.csv. Note that the data has lots of `NA` values - don't worry if you see that. @@ -85,7 +85,7 @@ tidy(t.test(x, y)) ### 2.1 -Read in the Kaggle cars auction dataset. Assign it to the "cars" variable. You can find the data here: http://jhudatascience.org/intro_to_r/data/kaggleCarAuction.csv. +Read in the Kaggle used car auction dataset (https://www.kaggle.com/datasets/tunguz/used-car-auction-prices). Assign it to the "cars" variable. You can find the data here: http://jhudatascience.org/intro_to_r/data/kaggleCarAuction.csv. ```{r 2.1response} cars <- read_csv("http://jhudatascience.org/intro_to_r/data/kaggleCarAuction.csv")