-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathWinderlich.yaml
76 lines (74 loc) · 2.63 KB
/
Winderlich.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
- key: Winderlich SCQS
doi: [pers_comm, K. Winderlich, DWD]
metric:
name: SCQS
long_name: Synoptic Circulation Quality Score
units: 1
variables: z500
comment: |
Domain is CORDEX-EUR. Data z500 is converted to daily anomalies and
normalized by daily standard deviation. Data are then attributed to
previously obtained Synoptic Circulation (SP) classes. Number of
Synoptic Circulation classes is 43 (derived on daily ERA-Interim data,
1979-2018). For each model, 7 variables are computed from the
attributed daily data.
1) HIST - frequency of each SP-class (year through)
2) HIST_JFD - frequency of each SP-class (winter)
3) HIST_MAM - frequency of each SP-class (spring)
4) HIST_JJA - frequency of each SP-class (summer)
5) HIST_SON - frequency of each SP-class (autumn)
6) SEQUENCE - matrix of frequencies for the subsequent occurrence
of the pair of two synoptic patterns SPi?SPj.
7) PERSISTENCE - matrix of frequency for persistence of each
SP-class for 1,2,3,.. N days in a row.
The SCQS is computed as the mean of 7 individual Quality Scores
computed on each of these variables.
best: 1
worst: 0
type: performance
spatial_scope: EUR
temporal_scope: Annual
plausible_values:
- min: 0
max: 1
source: author
comment: >
The higher the better, SCQS between reference reanalysis (ERA-Interim)
and an alternative reanalysis (NCAR-NCEP1) is in the table for comparison.
data_source: author
data:
ACCESS-CM2_r1i1p1f1: 0.84
AWI-ESM-1-1-LR_r1i1p1f1: 0.79
BCC-CSM2-MR_r1i1p1f1: 0.83
BCC-ESM1_r1i1p1f1: 0.84
CanESM5_r1i1p1f1: 0.82
CESM2_r1i1p1f1: 0.83
CESM2-FV2_r1i1p1f1: 0.82
CESM2-WACCM-FV2_r1i1p1f1: 0.81
CMCC-CM2-SR5_r1i1p1f1: 0.85
CNRM-CM6-1_r1i1p1f2: 0.79
CNRM-ESM2-1_r1i1p1f2: 0.79
EC-Earth3_r1i1p1f1: 0.82
EC-Earth3-Veg_r1i1p1f1: 0.82
FGOALS-f3-L_r1i1p1f1: 0.79
FGOALS-g3_r1i1p1f1: 0.80
GISS-E2-1-G_r1i1p1f1: 0.79
HadGEM3-GC31-LL_r1i1p1f3: 0.83
HadGEM3-GC31-MM_r1i1p1f3: 0.84
INM-CM4-8_r1i1p1f1: 0.81
INM-CM5-0_r1i1p1f1: 0.84
IPSL-CM6A-LR_r1i1p1f1: 0.79
IPSL-CM6A-LR-INCA_r1i1p1f1: 0.76
KACE-1-0-G_r1i1p1f1: 0.85
MIROC6_r1i1p1f1: 0.81
MPI-ESM-1-2-HAM_r1i1p1f1: 0.83
MPI-ESM1-2-HR_r1i1p1f1: 0.87
MPI-ESM1-2-LR_r1i1p1f1: 0.82
MRI-ESM2-0_r1i1p1f1: 0.85
NorESM2-LM_r1i1p1f1: 0.80
NorESM2-MM_r1i1p1f1: 0.84
TaiESM1_r1i1p1f1: 0.83
UKESM1-0-LL_r1i1p1f2: 0.83
data_other:
ERA-Interim: 1.00 # reference reanalysis
NCAR-NCEP1: 0.90