-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathBra21.yaml
293 lines (292 loc) · 11.8 KB
/
Bra21.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
- key: Bra21 Lamb EUR
doi: 10.5194/gmd-2020-418
metric:
name: lwtmae
long_name: MAE of 27 Lamb Weather Type relative frequencies
units: percent
variables: psl
comment: >
Mean absolute error (MAE) of the simulated vs. quasi-observed (reanalysis)
relative frequencies for the 27 Lamb Weather Types representing recurrent
regional (synoptic) atmospheric circulation patterns. The MAE was calculated separately
for each grid-box of a regular 2.5 deg lat-lon mesh extending from 22.5W to 42.5E
and 30N to 70N for the 1979-2005 period. The spatial median MAE is provided here.
Reference dataset to compute the metric is ERA5. As an estimator of reanalysis
uncertainty, the median MAE for the JRA-55 reanalysis validated against ERA5
is 0.1686.
best: 0
worst: 100
type: performance
spatial_scope: EUR
temporal_scope: Annual
period:
reference: 1979-2005
plausible_values:
- min: 0
max: 1
source: eurocordex_gcm_selection_team
comment: >
Test value
- min: 0
max: 5
source: author
comment: >
The range of plausible values is directly obtained from
the reference, the maximum MAE obtained there
is here rounded to the next integer.
data_source: author_adapted
data:
CESM2_1001.001: 0.6338
CESM2_1021.002: 0.6437
CESM2_1041.003: 0.5729
CESM2_1061.004: 0.558
CESM2_1081.005: 0.6342
CESM2_1101.006: 0.5911
CESM2_1121.007: 0.6458
CESM2_1141.008: 0.6421
CESM2_1161.009: 0.5301
CESM2_1181.010: 0.5099
CESM2_1231.001: 0.5696
CESM2_1231.002: 0.5806
CESM2_1231.003: 0.5392
CESM2_1231.004: 0.6386
CESM2_1231.005: 0.535
CESM2_1231.006: 0.5809
CESM2_1231.007: 0.6306
CESM2_1231.008: 0.5332
CESM2_1231.009: 0.53
CESM2_1231.010: 0.5977
CESM2_1251.001: 0.529
CESM2_1251.002: 0.5343
CESM2_1251.003: 0.5652
CESM2_1251.004: 0.6192
CESM2_1251.005: 0.5653
CESM2_1251.006: 0.5486
CESM2_1251.007: 0.6176
CESM2_1251.008: 0.4947
CESM2_1251.009: 0.6697
CESM2_1251.010: 0.6347
CESM2_1281.001: 0.6031
CESM2_1281.002: 0.5514
CESM2_1281.003: 0.5797
CESM2_1281.004: 0.58496
CESM2_1281.005: 0.6749
CESM2_1281.006: 0.4973
CESM2_1281.007: 0.6815
CESM2_1281.008: 0.5637
CESM2_1281.009: 0.6541
CESM2_1281.010: 0.6216
CESM2_1301.001: 0.5287
CESM2_1301.002: 0.6112
CESM2_1301.003: 0.6442
CESM2_1301.004: 0.5575
CESM2_1301.005: 0.657
CESM2_1301.006: 0.5956
CESM2_1301.007: 0.5496
CESM2_1301.008: 0.5467
CESM2_1301.009: 0.6842
CESM2_1301.010: 0.5471
ACCESS-CM2_r1i1p1f1: 0.5218
ACCESS-ESM1-5_r1i1p1f1: 0.6463
ACCESS-ESM1-5_r3i1p1f1: 0.6486
HadGEM3-GC31-MM_r1i1p1f3: 0.3931
FGOALS-g3_r3i1p1f1: 0.9532
MPI-ESM1-2-LR_r1i1p1f1: 0.6525
MPI-ESM1-2-LR_r2i1p1f1: 0.7196
MPI-ESM1-2-LR_r3i1p1f1: 0.6931
MPI-ESM1-2-LR_r4i1p1f1: 0.7143
MPI-ESM1-2-LR_r5i1p1f1: 0.7365
MPI-ESM1-2-LR_r6i1p1f1: 0.744
MPI-ESM1-2-LR_r7i1p1f1: 0.6281
MPI-ESM1-2-LR_r8i1p1f1: 0.6253
MPI-ESM1-2-LR_r9i1p1f1: 0.753
MPI-ESM1-2-LR_r10i1p1f1: 0.6715
MPI-ESM1-2-HR_r1i1p1f1: 0.5767
MPI-ESM1-2-HR_r2i1p1f1: 0.4931
MPI-ESM-1-2-HAM_r1i1p1f1: 0.7152
AWI-ESM-1-1-LR_r1i1p1f1: 0.654
NESM3_r1i1p1f1: 0.7167
CMCC-CM2-SR5_r1i1p1f1: 0.633
CMCC-CM2-HR4_r1i1p1f1: 0.9421
CMCC-ESM2_r1i1p1f1: 0.563
NorESM2-LM_r1i1p1f1: 1.0197
NorESM2-MM_r1i1p1f1: 0.7298
SAM0-UNICON_r1i1p1f1: 0.7634
CNRM-CM6-1_r1i1p1f2: 0.7543
CNRM-CM6-1-HR_r1i1p1f2: 0.7714
CNRM-ESM2-1_r1i1p1f2: 0.7258
EC-Earth3_r1i1p1f1: 0.3207
EC-Earth3-Veg_r1i1p1f1: 0.3814
EC-Earth3-Veg_r2i1p1f1: 0.3806 #check whether this run belongs to "data" or "data_other"
EC-Earth3-Veg_r3i1p1f1: 0.32 #check whether this run belongs to "data" or "data_other"
EC-Earth3-Veg_r4i1p1f1: 0.3408 #check whether this run belongs to "data" or "data_other"
EC-Earth3-Veg_r6i1p1f1: 0.3515 #check whether this run belongs to "data" or "data_other"
EC-Earth3-Veg_r11i1p1f1: 0.3157 #check whether this run belongs to "data" or "data_other"
EC-Earth3-Veg-LR_r1i1p1f1: 0.405
EC-Earth3-AerChem_r1i1p1f1: 0.402
EC-Earth3-CC_r1i1p1f1: 0.3252
GFDL-CM4_r1i1p1f1: 0.6315
GFDL-ESM4_r1i1p1f1: 0.7405 #check whether this run belongs to "data" or "data_other"
GISS-E2-1-G_r1i1p1f1: 0.708
IPSL-CM6A-LR_r1i1p1f1: 0.7567
IPSL-CM6A-LR_r14i1p1f1: 0.6495
MIROC6_r1i1p1f1: 0.8381 #check whether this run belongs to "data" or "data_other"
MIROC6_r3i1p1f1: 0.8769
MIROC-ES2L_r1i1p1f2: 1.1753
MIROC-ES2L_r5i1p1f2: 1.1382
MRI-ESM2-0_r1i1p1f1: 0.6176
BCC-CSM2-MR_r1i1p1f1: 0.6514
IITM-ESM_r1i1p1f1: 0.8074
KACE-1-0-G_r1i1p1f1: 0.6361 #check whether this run belongs to "data" or "data_other"
KIOST-ESM_r1i1p1f1: 0.883
TaiESM1_r1i1p1f1: 0.6324
INM-CM5_r2i1p1f1: 0.6103 #check whether this run belongs to "data" or "data_other"
data_other: # Model provides less than 2 scenarios for RCMs and no other metrics available for them
CNRM-CM6-1_r2i1p1f2: 0.8011
CNRM-CM6-1_r3i1p1f2: 0.7586
EC-Earth3_r3i1p1f1: 0.3245
EC-Earth3_r4i1p1f1: 0.344
EC-Earth3_r7i1p1f1: 0.3515
EC-Earth3_r10i1p1f1: 0.3926
EC-Earth3_r12i1p1f1: 0.319
EC-Earth3_r14i1p1f1: 0.3292
EC-Earth3_r16i1p1f1: 0.3472
EC-Earth3_r17i1p1f1: 0.3288
EC-Earth3_r18i1p1f1: 0.3297
EC-Earth3_r19i1p1f1: 0.3722
EC-Earth3_r20i1p1f1: 0.3157
EC-Earth3_r21i1p1f1: 0.3179
EC-Earth3_r22i1p1f1: 0.3128
EC-Earth3_r23i1p1f1: 0.3382
EC-Earth3_r24i1p1f1: 0.3183
EC-Earth3_r25i1p1f1: 0.3239
IPSL-CM6A-LR_r10i1p1f1: 0.7132
IPSL-CM6A-LR_r11i1p1f1: 0.7042
IPSL-CM6A-LR_r12i1p1f1: 0.6737
IPSL-CM6A-LR_r13i1p1f1: 0.6803
IPSL-CM6A-LR_r15i1p1f1: 0.7042
IPSL-CM6A-LR_r16i1p1f1: 0.6137
IPSL-CM6A-LR_r17i1p1f1: 0.6719
IPSL-CM6A-LR_r18i1p1f1: 0.7271
IPSL-CM6A-LR_r19i1p1f1: 0.6514
IPSL-CM6A-LR_r20i1p1f1: 0.7075
IPSL-CM6A-LR_r21i1p1f1: 0.6259
IPSL-CM6A-LR_r22i1p1f1: 0.6779
IPSL-CM6A-LR_r23i1p1f1: 0.6137
IPSL-CM6A-LR_r24i1p1f1: 0.7381
IPSL-CM6A-LR_r25i1p1f1: 0.6991
IPSL-CM6A-LR_r32i1p1f1: 0.6997
MPI-ESM1-2-HR_r3i1p1f1: 0.5569
MPI-ESM1-2-HR_r4i1p1f1: 0.5663
MPI-ESM1-2-HR_r5i1p1f1: 0.5558
MPI-ESM1-2-HR_r6i1p1f1: 0.4867
MPI-ESM1-2-HR_r7i1p1f1: 0.4649
MPI-ESM1-2-HR_r8i1p1f1: 0.5859
MPI-ESM1-2-HR_r9i1p1f1: 0.5692
MPI-ESM1-2-HR_r10i1p1f1: 0.5235
MRI-ESM2-0_r2i1p1f1: 0.6065
MRI-ESM2-0_r3i1p1f1: 0.6578
MRI-ESM2-0_r4i1p1f1: 0.5996
MRI-ESM2-0_r5i1p1f1: 0.6463
NESM3_r2i1p1f1: 0.6075
NESM3_r3i1p1f1: 0.6595
NESM3_r4i1p1f1: 0.6484
NESM3_r5i1p1f1: 0.609
NorESM2-LM_r2i1p1f1: 1.1439
NorESM2-LM_r3i1p1f1: 1.0582
NorESM2-MM_r2i1p1f1: 0.6691
NorESM2-MM_r3i1p1f1: 0.6269
data_cmip5:
BCC-CSM1-1_r1i1p1: 1.1643
CSIRO-MK3-6-0_r1i1p1: 1.2603
ACCESS1.0_r1i1p1: 0.454
ACCESS1.3_r1i1p1: 0.6268
HadGEM2-ES_r1i1p1: 0.4568
HadGEM2-ES_r2i1p1: 0.4518
HadGEM2-CC_r1i1p1: 0.5292
FGOALS-g2_r1i1p1: 1.5029
MPI-ESM-LR_r1i1p1: 0.7383
MPI-ESM-MR_r1i1p1: 0.8782
CMCC-CM_r1i1p1: 0.6014
NorESM1-M_r1i1p1: 0.9845
CCSM4_r6i1p1: 1.0283
CNRM-CM5_r1i1p1: 0.7768
EC-Earth_r12i1p1: 0.4285
GFDL-CM3_r1i1p1: 0.6191
GFDL-ESM2G_r1i1p1: 0.9871
GISS-E2-H_r6i1p1: 0.7526
GISS-E2-R_r6i1p1: 0.8458
IPSL-CM5A-LR_r1i1p1: 0.9777
IPSL-CM5A-LR_r2i1p1: 1.0415
IPSL-CM5A-LR_r3i1p1: 1.0199
IPSL-CM5A-LR_r4i1p1: 0.9938
IPSL-CM5A-LR_r5i1p1: 0.9923
IPSL-CM5A-LR_r6i1p1: 1.0074
IPSL-CM5A-MR_r1i1p1: 1.0174
MIROC5_r1i1p1: 0.9864
MIROC-ESM_r1i1p1: 1.2983
MRI-ESM1_r1i1p1: 0.6805
CanESM2_r1i1p1: 0.8588
INM-CM4_r1i1p1: 0.6332
- key: Bra21 complexity
doi: 10.5194/gmd-2020-418
metric:
name: complexity
long_name: Complexity of model components
units: categorical
variables: []
comment: |
Model complexity from Table 1 is coded with ternary values
0 - not considered
1 - prescribed
2 - interactive component
in the following order Atm-Lnd-Ocn-SI-Veg-Tbgc-Aer-Chem-Obgc-Gla
type: other
spatial_scope: special
temporal_scope: Annual
plausible_values:
min: 2222000000
max: 2222222222
source: eurocordex_gcm_selection_team
comment: >
At least coupled Atm-Lnd-Ocn-SI with some form of aerosol consideration
data_source: reference
data:
# ALOIVtACoG
ACCESS-CM2_r1i1p1f1: 2222002000 #confirmed by Dave Bi, Tilo Ziehn and Matt Woodhouse
ACCESS-ESM1-5_r1i1p1f1: 2222122020 #confirmed by Dave Bi, Tilo Ziehn and Matt Woodhouse
AWI-ESM-1-1-LR_r1i1p1f1: 2222220100 #confirmed by Christopher Danek
BCC-CSM2-MR_r1i1p1f1: 2222221120 #confirmed by Tongwen Wu and Laurent Li
CanESM5_r1i1p1f1: 2222222121 #confirmed by Neil Swart
CESM2_1001.001: 2222222121 #from doi: 10.1029/2019MS001916, has to be confirmed by NCAR staff
CMCC-CM2-SR5_r1i1p1f1: 2222002000 #confirmed by Enrico Scoccimarro and Annalisa Cherchie
CMCC-CM2-HR4_r1i1p1f1: 2222001000 #yet has to be confirmed by Enrico Scoccimarro and Annalisa Cherchie
CMCC-ESM2_r1i1p1f1: 2222022020 # confirmed by Enrico Scoccimarro and Annalisa Cherchie
CNRM-CM6-1_r1i1p1f2: 2222101100 #confirmed by Aurore Voldoire
CNRM-CM6-1-HR_r1i1p1f2: 2222101100 #confirmed by Aurore Voldoire
CNRM-ESM2-1_r1i1p1f2: 2222222220 #confirmed by Aurore Voldoire under the assumption that interactive stratospheric chemistry only (i.e. tropospheric chemistriy is not interactive) merits a 2
EC-Earth3_r1i1p1f1: 2222101000 #confirmed by Ralf Döscher and Klaus Wyser
EC-Earth3-Veg_r1-3i1p1f1: 2222221000 #confirmed by Ralf Döscher and Klaus Wyser
EC-Earth3-Veg_r6i1p1f1: 2222221000 #confirmed by Ralf Döscher and Klaus Wyser
EC-Earth3-Veg-LR_r1i1p1f1: 2222221000 #confirmed by Ralf Döscher and Klaus Wyser
EC-Earth3-AerChem_r1i1p1f1: 2222102000 #confirmed by Ralf Döscher and Klaus Wyser
EC-Earth3-CC_r1i1p1f1: 2222221020 #confirmed by Ralf Döscher and Klaus Wyser
GFDL-CM4_r1i1p1f1: 2222212110 #best guess from doi 10.1029/2019MS001829 and 10.1029/2019MS002015; still needs to be confirmed by GFDL staff
GFDL-ESM4_r1i1p1f1: 2222222220 #best guess from doi 10.1029/2019MS001829 and 10.1029/2019MS002015; still needs to be confirmed by GFDL staff
GISS-E2-1-G_r1i1p1f1: 2222101100 #confirmed by Gavin A. Schmidt
HadGEM3-GC31-MM_r1i1p1f3: 2222002000 #confirmed by Gill Martin
IITM-ESM_r1i1p1f1: 2222101020 #provided by Panickal Swapna
IPSL-CM6A-LR_r1i1p1f1: 2222221121 #best guess from doi 10.1029/2019MS002010; commented by Olivier Boucher but not yet definetely confirmed
KACE-1-0-G_r1i1p1f1: 2222222000 #best guess from file metadata and doi 10.1007/s13143-019-00144-7; yet has to be confirmed
KIOST-ESM_r1i1p1f1: 2222221120 #confirmed by YoungHo Kim
MIROC6_r3i1p1f1: 2222102000 #confirmed by Hiroaki Tatebe
MIROC-ES2L_r5i1p1f2: 2222022020 #confirmed by Hiroaki Tatebe
MPI-ESM1-2-LR_r1i1p1f1: 2222221020 #confirmed by Thorsten Mauritsen
MPI-ESM1-2-HR_r1i1p1f1: 2222221020 #confirmed by Thorsten Mauritsen
MPI-ESM-1-2-HAM_r1i1p1f1: 2222222120 #confirmed by Ina Tegen
MRI-ESM2-0_r1i1p1f1: 2222112210 #with 2222122220 for r1i2p1f1, confirmed by Seiji Yukimoto
NESM3_r1i1p1f1: 2222221000 #confirmed by Jian Cao
NorESM2-LM_r1i1p1f1: 2222122120 #confirmed by Øyvind Seland
NorESM2-MM_r1i1p1f1: 2222122120 #confirmed by Øyvind Seland
SAM0-UNICON_r1i1p1f1: 2222222000 #buest guess from doi 10.1175/JCLI-D-18-0796.1; yet needs to be confirmed
TaiESM1_r1i1p1f1: 2222222000 #confirmed by Wei-Liang Lee