-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
66 lines (57 loc) · 2.37 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Import
import numpy as np
import pandas as pd
from sklearn import preprocessing
from preprocess import df
# The most cursed way to scale a column, because for reasons, simply to scaler.transform(df) doesn't work in our case.
def scale_col(col_train, col_target, scaler):
column_name = col_train.name
col_train = col_train.to_numpy()
col_train = [[val] for val in col_train]
scaler.fit(col_train)
col_target = col_target.to_numpy()
col_target = [[val] for val in col_target]
col_scaled = scaler.transform(col_target)
col_scaled = col_scaled.reshape(-1)
col_scaled = pd.Series(data=col_scaled, name=column_name)
return col_scaled
# The most cursed way to scale a df, because for reasons, simply to scaler.transform(df) doesn't work in our case.
def scale_df(df_train, df_target, scaler):
df_scaled = []
for col in df_train:
col_train = df_train[col].to_numpy()
col_train = [[val] for val in col_train]
scaler.fit(col_train)
col_target = df_target[col].to_numpy()
col_target = [[val] for val in col_target]
col_scaled = scaler.transform(col_target)
df_scaled.append(col_scaled)
df_scaled = np.array(df_scaled)
df_scaled = df_scaled.T
df_scaled = df_scaled.reshape(-1, df_scaled.shape[-1])
df_scaled = pd.DataFrame(data=df_scaled, columns=df_train.columns)
return df_scaled
def inverse_scale_df(df_train, df_target, scaler):
df_scaled = []
for col in df_train:
col_train = df_train[col].to_numpy()
col_train = [[val] for val in col_train]
scaler.fit(col_train)
col_target = df_target[col].to_numpy()
col_target = [[val] for val in col_target]
col_scaled = scaler.inverse_transform(col_target)
df_scaled.append(col_scaled)
df_scaled = np.array(df_scaled)
df_scaled = df_scaled.T
df_scaled = df_scaled.reshape(-1, df_scaled.shape[-1])
df_scaled = pd.DataFrame(data=df_scaled, columns=df_train.columns)
return df_scaled
if __name__ == "__main__":
std_scale = preprocessing.StandardScaler()
mm_scale = preprocessing.MinMaxScaler()
normalize = preprocessing.Normalizer()
spending = df.loc[:,"RoomService":"TotalSpending"]
spending_scaled = scale_df(spending, spending, mm_scale)
print(spending_scaled)
scaled_spa = scale_col(df["Spa"], df["Spa"], mm_scale)
print(scaled_spa)