-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcnn_pilot.py
53 lines (45 loc) · 1.76 KB
/
cnn_pilot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def cnn_pilot():
import nibabel as nib
import os
import numpy as np
from matplotlib import pyplot as plt
import glob
import tensorflow as tf
print(tf.__version__)
import keras
import random
%matplotlib inline
# Read in data
dat = np.load('/Users/benjaminwade/Desktop/HCP_DL_Project/data/hcp_dat.npy')
print(dat.shape)
# Normalize data
dat_norm=[]
for i in range(0,len(dat[:,1,1])):
dat_norm.append(dat[i]/np.amax(dat[i]))
dat_norm=np.array(dat_norm)
dat_norm=np.expand_dims(dat_norm, axis=3)
# Make (random) training and testing data partition and (random) outcome labels
split_index=np.random.choice([0, 1], size=(len(dat_norm[:,1,1]),), p=[.3, .7])
train_data=dat_norm[split_index==1,:,:]
test_data=dat_norm[split_index==0,:,:]
train_labels=np.random.choice([0, 1], size=(len(train_data[:,1,1]),), p=[.5, .5])
test_labels=np.random.choice([0, 1], size=(len(test_data[:,1,1]),), p=[.5, .5])
# Build model
model = keras.models.Sequential([
keras.layers.Conv2D(64, (3,3), activation = 'relu', input_shape=(311,311,1)),
keras.layers.MaxPooling2D(2,2),
keras.layers.Conv2D(64, (3,3), activation = 'relu'),
keras.layers.MaxPooling2D(2,2),
keras.layers.Conv2D(64, (3,3), activation = 'relu'),
keras.layers.MaxPooling2D(2,2),
keras.layers.Conv2D(64, (3,3), activation = 'relu'),
keras.layers.MaxPooling2D(2,2),
keras.layers.Flatten(),
keras.layers.Dense(128, activation = 'relu'),
keras.layers.Dense(2, activation = 'softmax')
])
# Fit model
fit=model.fit(train_data, train_labels, epochs=3)
test_loss = model.evaluate(test_data, test_labels)
print(test_loss)
return fit, test_loss