-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathtrie.js
85 lines (71 loc) · 2 KB
/
trie.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/**
* Implement a trie with insert, search, and startsWith methods.
*
* Note:
* You may assume that all inputs are consist of lowercase letters a-z.
*
* The following picture explains construction of trie using keys given in the example below,
*
* root
* / \ \
* t a b
* | | |
* h n y
* | | \ |
* e s y e
* / | |
* i r w
* | | |
* r e e
* |
* r
*
* Trie is an efficient information reTrieval data structure. Using Trie,
* search complexities can be brought to optimal limit (key length).
*
* If we store keys in binary search tree, a well balanced BST will need time proportional to M * log N,
* where M is maximum string length and N is number of keys in tree. Using Trie, we can search the key in O(M) time.
*
* However the penalty is on Trie storage requirements.
*/
class TrieNode {
constructor() {
this.children = {};
this.isEnd = false;
}
}
export default class Trie {
constructor() {
this.root = new TrieNode();
}
insert(word) {
let current = this.root;
for (let i = 0; i < word.length; i++) {
if (!(word[i] in current.children)) {
current.children[word[i]] = new TrieNode();
}
current = current.children[word[i]];
}
current.isEnd = true;
}
search(word) {
let current = this.root;
for (let i = 0; i < word.length; i++) {
if (!(word[i] in current.children)) {
return false;
}
current = current.children[word[i]];
}
return current.isEnd;
}
startsWith(prefix) {
let current = this.root;
for (let i = 0; i < prefix.length; i++) {
if (!(prefix[i] in current.children)) {
return false;
}
current = current.children[prefix[i]];
}
return true;
}
}