-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathcombination-sum-iv.js
77 lines (68 loc) · 1.45 KB
/
combination-sum-iv.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/**
* Combination Sum IV
*
* Given an integer array with all positive numbers and no duplicates,
* find the number of possible combinations that add up to a positive integer target.
*
* Example:
*
* nums = [1, 2, 3]
* target = 4
*
* The possible combination ways are:
* (1, 1, 1, 1)
* (1, 1, 2)
* (1, 2, 1)
* (1, 3)
* (2, 1, 1)
* (2, 2)
* (3, 1)
*
* Note that different sequences are counted as different combinations.
*
* Therefore the output is 7.
*
* Follow up:
* What if negative numbers are allowed in the given array?
* How does it change the problem?
* What limitation we need to add to the question to allow negative numbers?
*/
/**
* Recursion Solution
*
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
const combinationSum4 = (nums, target) => {
if (target == 0) {
return 1;
}
let res = 0;
for (let i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += combinationSum4(nums, target - nums[i]);
}
}
return res;
};
/**
* Dynamic Programming Solution
*
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
const combinationSum4_II = (nums, target) => {
const dp = Array(target + 1).fill(0);
dp[0] = 1;
for (let i = 1; i <= target; i++) {
for (let j = 0; j < nums.length; j++) {
if (i - nums[j] >= 0) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
};
export { combinationSum4, combinationSum4_II };