forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_test.py
185 lines (157 loc) · 6.72 KB
/
data_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import pickle
import time
import numpy as np
import pandas as pd
import tensorflow as tf
from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
NUM_NEG = 4
def mock_download(*args, **kwargs):
return
class BaseTest(tf.test.TestCase):
def setUp(self):
self.temp_data_dir = self.get_temp_dir()
ratings_folder = os.path.join(self.temp_data_dir, DATASET)
tf.gfile.MakeDirs(ratings_folder)
np.random.seed(0)
raw_user_ids = np.arange(NUM_USERS * 3)
np.random.shuffle(raw_user_ids)
raw_user_ids = raw_user_ids[:NUM_USERS]
raw_item_ids = np.arange(NUM_ITEMS * 3)
np.random.shuffle(raw_item_ids)
raw_item_ids = raw_item_ids[:NUM_ITEMS]
users = np.random.choice(raw_user_ids, NUM_PTS)
items = np.random.choice(raw_item_ids, NUM_PTS)
scores = np.random.randint(low=0, high=5, size=NUM_PTS)
times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)
rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
self.seen_pairs = set()
self.holdout = {}
with tf.gfile.Open(rating_file, "w") as f:
f.write("user_id,item_id,rating,timestamp\n")
for usr, itm, scr, ts in zip(users, items, scores, times):
pair = (usr, itm)
if pair in self.seen_pairs:
continue
self.seen_pairs.add(pair)
if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
self.holdout[usr] = (ts, itm)
f.write("{},{},{},{}\n".format(usr, itm, scr, ts))
movielens.download = mock_download
movielens.NUM_RATINGS[DATASET] = NUM_PTS
def test_preprocessing(self):
# For the most part the necessary checks are performed within
# construct_cache()
ncf_dataset = data_preprocessing.construct_cache(
dataset=DATASET, data_dir=self.temp_data_dir, num_data_readers=2,
match_mlperf=False)
assert ncf_dataset.num_users == NUM_USERS
assert ncf_dataset.num_items == NUM_ITEMS
time.sleep(1) # Ensure we create the next cache in a new directory.
ncf_dataset = data_preprocessing.construct_cache(
dataset=DATASET, data_dir=self.temp_data_dir, num_data_readers=2,
match_mlperf=True)
assert ncf_dataset.num_users == NUM_USERS
assert ncf_dataset.num_items == NUM_ITEMS
def drain_dataset(self, dataset, g):
# type: (tf.data.Dataset, tf.Graph) -> list
with self.test_session(graph=g) as sess:
with g.as_default():
batch = dataset.make_one_shot_iterator().get_next()
output = []
while True:
try:
output.append(sess.run(batch))
except tf.errors.OutOfRangeError:
break
return output
def test_end_to_end(self):
ncf_dataset = data_preprocessing.instantiate_pipeline(
dataset=DATASET, data_dir=self.temp_data_dir,
batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE, num_data_readers=2,
num_neg=NUM_NEG)
for _ in range(30):
if tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
break
time.sleep(1) # allow `alive` file to be written
g = tf.Graph()
with g.as_default():
input_fn, record_dir, batch_count = \
data_preprocessing.make_train_input_fn(ncf_dataset)
dataset = input_fn({"batch_size": BATCH_SIZE, "use_tpu": False})
first_epoch = self.drain_dataset(dataset=dataset, g=g)
user_inv_map = {v: k for k, v in ncf_dataset.user_map.items()}
item_inv_map = {v: k for k, v in ncf_dataset.item_map.items()}
train_examples = {
True: set(),
False: set(),
}
for features, labels in first_epoch:
for u, i, l in zip(features[movielens.USER_COLUMN],
features[movielens.ITEM_COLUMN], labels):
u_raw = user_inv_map[u]
i_raw = item_inv_map[i]
if ((u_raw, i_raw) in self.seen_pairs) != l:
# The evaluation item is not considered during false negative
# generation, so it will occasionally appear as a negative example
# during training.
assert not l
assert i_raw == self.holdout[u_raw][1]
train_examples[l].add((u_raw, i_raw))
num_positives_seen = len(train_examples[True])
# The numbers don't match exactly because the last batch spills over into
# the next epoch
assert ncf_dataset.num_train_positives - num_positives_seen < BATCH_SIZE
# This check is more heuristic because negatives are sampled with
# replacement. It only checks that negative generation is reasonably random.
assert len(train_examples[False]) / NUM_NEG / num_positives_seen > 0.9
def test_shard_randomness(self):
users = [0, 0, 0, 0, 1, 1, 1, 1]
items = [0, 2, 4, 6, 0, 2, 4, 6]
times = [1, 2, 3, 4, 1, 2, 3, 4]
df = pd.DataFrame({movielens.USER_COLUMN: users,
movielens.ITEM_COLUMN: items,
movielens.TIMESTAMP_COLUMN: times})
cache_paths = rconst.Paths(data_dir=self.temp_data_dir)
np.random.seed(1)
data_preprocessing.generate_train_eval_data(df, approx_num_shards=2,
num_items=10,
cache_paths=cache_paths,
match_mlperf=True)
with tf.gfile.Open(cache_paths.eval_raw_file, "rb") as f:
eval_data = pickle.load(f)
eval_items_per_user = rconst.NUM_EVAL_NEGATIVES + 1
self.assertAllClose(eval_data[0][movielens.USER_COLUMN],
[0] * eval_items_per_user + [1] * eval_items_per_user)
# Each shard process should generate different random items.
self.assertNotAllClose(
eval_data[0][movielens.ITEM_COLUMN][:eval_items_per_user],
eval_data[0][movielens.ITEM_COLUMN][eval_items_per_user:])
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
tf.test.main()