forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_preprocessing.py
584 lines (471 loc) · 22.7 KB
/
data_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocess dataset and construct any necessary artifacts."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import atexit
import contextlib
import gc
import multiprocessing
import json
import os
import pickle
import signal
import subprocess
import time
import timeit
import typing
# pylint: disable=wrong-import-order
from absl import app as absl_app
from absl import flags
import numpy as np
import pandas as pd
import six
import tensorflow as tf
# pylint: enable=wrong-import-order
from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import stat_utils
from official.recommendation import popen_helper
class NCFDataset(object):
"""Container for training and testing data."""
def __init__(self, user_map, item_map, num_data_readers, cache_paths,
num_train_positives):
# type: (dict, dict, int, rconst.Paths) -> None
"""Assign key values for recommendation dataset.
Args:
user_map: Dict mapping raw user ids to regularized ids.
item_map: Dict mapping raw item ids to regularized ids.
num_data_readers: The number of reader Datasets used during training.
cache_paths: Object containing locations for various cache files.
num_train_positives: The number of positive training examples in the
dataset.
"""
self.user_map = {int(k): int(v) for k, v in user_map.items()}
self.item_map = {int(k): int(v) for k, v in item_map.items()}
self.num_users = len(user_map)
self.num_items = len(item_map)
self.num_data_readers = num_data_readers
self.cache_paths = cache_paths
self.num_train_positives = num_train_positives
def _filter_index_sort(raw_rating_path, match_mlperf):
# type: (str, bool) -> (pd.DataFrame, dict, dict)
"""Read in data CSV, and output structured data.
This function reads in the raw CSV of positive items, and performs three
preprocessing transformations:
1) Filter out all users who have not rated at least a certain number
of items. (Typically 20 items)
2) Zero index the users and items such that the largest user_id is
`num_users - 1` and the largest item_id is `num_items - 1`
3) Sort the dataframe by user_id, with timestamp as a secondary sort key.
This allows the dataframe to be sliced by user in-place, and for the last
item to be selected simply by calling the `-1` index of a user's slice.
While all of these transformations are performed by Pandas (and are therefore
single-threaded), they only take ~2 minutes, and the overhead to apply a
MapReduce pattern to parallel process the dataset adds significant complexity
for no computational gain. For a larger dataset parallelizing this
preprocessing could yield speedups. (Also, this preprocessing step is only
performed once for an entire run.
Args:
raw_rating_path: The path to the CSV which contains the raw dataset.
match_mlperf: If True, change the sorting algorithm to match the MLPerf
reference implementation.
Returns:
A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user
IDs to regularized user IDs, and a dict mapping raw item IDs to regularized
item IDs.
"""
with tf.gfile.Open(raw_rating_path) as f:
df = pd.read_csv(f)
# Get the info of users who have more than 20 ratings on items
grouped = df.groupby(movielens.USER_COLUMN)
df = grouped.filter(
lambda x: len(x) >= rconst.MIN_NUM_RATINGS) # type: pd.DataFrame
original_users = df[movielens.USER_COLUMN].unique()
original_items = df[movielens.ITEM_COLUMN].unique()
# Map the ids of user and item to 0 based index for following processing
tf.logging.info("Generating user_map and item_map...")
user_map = {user: index for index, user in enumerate(original_users)}
item_map = {item: index for index, item in enumerate(original_items)}
df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply(
lambda user: user_map[user])
df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply(
lambda item: item_map[item])
num_users = len(original_users)
num_items = len(original_items)
assert num_users <= np.iinfo(np.int32).max
assert num_items <= np.iinfo(np.uint16).max
assert df[movielens.USER_COLUMN].max() == num_users - 1
assert df[movielens.ITEM_COLUMN].max() == num_items - 1
# This sort is used to shard the dataframe by user, and later to select
# the last item for a user to be used in validation.
tf.logging.info("Sorting by user, timestamp...")
if match_mlperf:
# This sort is equivalent to the non-MLPerf sort, except that the order of
# items with the same user and timestamp are sometimes different. For some
# reason, this sort results in a better hit-rate during evaluation, matching
# the performance of the MLPerf reference implementation.
df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True)
df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
inplace=True, kind="mergesort")
else:
df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
inplace=True)
df = df.reset_index() # The dataframe does not reconstruct indicies in the
# sort or filter steps.
return df, user_map, item_map
def _train_eval_map_fn(args):
# type: (...) -> typing.Dict(np.ndarray)
"""Split training and testing data and generate testing negatives.
This function is called as part of a multiprocessing map. The principle
input is a shard, which contains a sorted array of users and corresponding
items for each user, where items have already been sorted in ascending order
by timestamp. (Timestamp is not passed to avoid the serialization cost of
sending it to the map function.)
For each user, all but the last item is written into a pickle file which the
training data producer can consume on as needed. The last item for a user
is a validation point; for each validation point a number of negatives are
generated (typically 999). The validation data is returned by this function,
as it is held in memory for the remainder of the run.
Args:
shard: A dict containing the user and item arrays.
shard_id: The id of the shard provided. This is used to number the training
shard pickle files.
num_items: The cardinality of the item set, which determines the set from
which validation negatives should be drawn.
cache_paths: rconst.Paths object containing locations for various cache
files.
seed: Random seed to be used when generating testing negatives.
match_mlperf: If True, sample eval negative with replacements, which the
MLPerf reference implementation does.
Returns:
A dict containing the evaluation data for a given shard.
"""
shard, shard_id, num_items, cache_paths, seed, match_mlperf = args
np.random.seed(seed)
users = shard[movielens.USER_COLUMN]
items = shard[movielens.ITEM_COLUMN]
# This produces index boundaries which can be used to slice by user.
delta = users[1:] - users[:-1]
boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() +
[users.shape[0]])
train_blocks = []
test_blocks = []
test_positives = []
for i in range(len(boundaries) - 1):
# This is simply a vector of repeated values such that the shard could be
# represented compactly with a tuple of tuples:
# ((user_id, items), (user_id, items), ...)
# rather than:
# user_id_vector, item_id_vector
# However the additional nested structure significantly increases the
# serialization and deserialization cost such that it is not worthwhile.
block_user = users[boundaries[i]:boundaries[i+1]]
assert len(set(block_user)) == 1
block_items = items[boundaries[i]:boundaries[i+1]]
train_blocks.append((block_user[:-1], block_items[:-1]))
test_negatives = stat_utils.sample_with_exclusion(
num_items=num_items, positive_set=set(block_items),
n=rconst.NUM_EVAL_NEGATIVES, replacement=match_mlperf)
test_blocks.append((
block_user[0] * np.ones((rconst.NUM_EVAL_NEGATIVES + 1,),
dtype=np.int32),
np.array([block_items[-1]] + test_negatives, dtype=np.uint16)
))
test_positives.append((block_user[0], block_items[-1]))
train_users = np.concatenate([i[0] for i in train_blocks])
train_items = np.concatenate([i[1] for i in train_blocks])
train_shard_fpath = cache_paths.train_shard_template.format(
str(shard_id).zfill(5))
with tf.gfile.Open(train_shard_fpath, "wb") as f:
pickle.dump({
movielens.USER_COLUMN: train_users,
movielens.ITEM_COLUMN: train_items,
}, f)
test_users = np.concatenate([i[0] for i in test_blocks])
test_items = np.concatenate([i[1] for i in test_blocks])
assert test_users.shape == test_items.shape
assert test_items.shape[0] % (rconst.NUM_EVAL_NEGATIVES + 1) == 0
return {
movielens.USER_COLUMN: test_users,
movielens.ITEM_COLUMN: test_items,
}
def generate_train_eval_data(df, approx_num_shards, num_items, cache_paths,
match_mlperf):
# type: (pd.DataFrame, int, int, rconst.Paths, bool) -> None
"""Construct training and evaluation datasets.
This function manages dataset construction and validation that the
transformations have produced correct results. The particular logic of
transforming the data is performed in _train_eval_map_fn().
Args:
df: The dataframe containing the entire dataset. It is essential that this
dataframe be produced by _filter_index_sort(), as subsequent
transformations rely on `df` having particular structure.
approx_num_shards: The approximate number of similarly sized shards to
construct from `df`. The MovieLens has severe imbalances where some users
have interacted with many items; this is common among datasets involving
user data. Rather than attempt to aggressively balance shard size, this
function simply allows shards to "overflow" which can produce a number of
shards which is less than `approx_num_shards`. This small degree of
imbalance does not impact performance; however it does mean that one
should not expect approx_num_shards to be the ACTUAL number of shards.
num_items: The cardinality of the item set.
cache_paths: rconst.Paths object containing locations for various cache
files.
match_mlperf: If True, sample eval negative with replacements, which the
MLPerf reference implementation does.
"""
num_rows = len(df)
approximate_partitions = np.linspace(
0, num_rows, approx_num_shards + 1).astype("int")
start_ind, end_ind = 0, 0
shards = []
for i in range(1, approx_num_shards + 1):
end_ind = approximate_partitions[i]
while (end_ind < num_rows and df[movielens.USER_COLUMN][end_ind - 1] ==
df[movielens.USER_COLUMN][end_ind]):
end_ind += 1
if end_ind <= start_ind:
continue # imbalance from prior shard.
df_shard = df[start_ind:end_ind]
user_shard = df_shard[movielens.USER_COLUMN].values.astype(np.int32)
item_shard = df_shard[movielens.ITEM_COLUMN].values.astype(np.uint16)
shards.append({
movielens.USER_COLUMN: user_shard,
movielens.ITEM_COLUMN: item_shard,
})
start_ind = end_ind
assert end_ind == num_rows
approx_num_shards = len(shards)
tf.logging.info("Splitting train and test data and generating {} test "
"negatives per user...".format(rconst.NUM_EVAL_NEGATIVES))
tf.gfile.MakeDirs(cache_paths.train_shard_subdir)
# We choose a different random seed for each process, so that the processes
# will not all choose the same random numbers.
process_seeds = [np.random.randint(2**32) for _ in range(approx_num_shards)]
map_args = [(shards[i], i, num_items, cache_paths, process_seeds[i],
match_mlperf)
for i in range(approx_num_shards)]
with contextlib.closing(
multiprocessing.Pool(multiprocessing.cpu_count())) as pool:
test_shards = pool.map(_train_eval_map_fn, map_args) # pylint: disable=no-member
tf.logging.info("Merging test shards...")
test_users = np.concatenate([i[movielens.USER_COLUMN] for i in test_shards])
test_items = np.concatenate([i[movielens.ITEM_COLUMN] for i in test_shards])
assert test_users.shape == test_items.shape
assert test_items.shape[0] % (rconst.NUM_EVAL_NEGATIVES + 1) == 0
test_labels = np.zeros(shape=test_users.shape)
test_labels[0::(rconst.NUM_EVAL_NEGATIVES + 1)] = 1
eval_data = ({
movielens.USER_COLUMN: test_users,
movielens.ITEM_COLUMN: test_items,
}, test_labels)
tf.logging.info("Writing test data to file.")
tf.gfile.MakeDirs(cache_paths.eval_data_subdir)
with tf.gfile.Open(cache_paths.eval_raw_file, "wb") as f:
pickle.dump(eval_data, f, protocol=pickle.HIGHEST_PROTOCOL)
def construct_cache(dataset, data_dir, num_data_readers, match_mlperf):
# type: (str, str, int, bool) -> NCFDataset
"""Load and digest data CSV into a usable form.
Args:
dataset: The name of the dataset to be used.
data_dir: The root directory of the dataset.
num_data_readers: The number of parallel processes which will request
data during training.
match_mlperf: If True, change the behavior of the cache construction to
match the MLPerf reference implementation.
"""
cache_paths = rconst.Paths(data_dir=data_dir)
num_data_readers = (num_data_readers or int(multiprocessing.cpu_count() / 2)
or 1)
approx_num_shards = int(movielens.NUM_RATINGS[dataset]
// rconst.APPROX_PTS_PER_TRAIN_SHARD) or 1
st = timeit.default_timer()
cache_root = os.path.join(data_dir, cache_paths.cache_root)
if tf.gfile.Exists(cache_root):
raise ValueError("{} unexpectedly already exists."
.format(cache_paths.cache_root))
tf.logging.info("Creating cache directory. This should be deleted on exit.")
tf.gfile.MakeDirs(cache_paths.cache_root)
raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE)
df, user_map, item_map = _filter_index_sort(raw_rating_path, match_mlperf)
generate_train_eval_data(df=df, approx_num_shards=approx_num_shards,
num_items=len(item_map), cache_paths=cache_paths,
match_mlperf=match_mlperf)
del approx_num_shards # value may have changed.
ncf_dataset = NCFDataset(user_map=user_map, item_map=item_map,
num_data_readers=num_data_readers,
cache_paths=cache_paths,
num_train_positives=len(df) - len(user_map))
run_time = timeit.default_timer() - st
tf.logging.info("Cache construction complete. Time: {:.1f} sec."
.format(run_time))
return ncf_dataset
def _shutdown(proc):
# type: (subprocess.Popen) -> None
"""Convenience function to cleanly shut down async generation process."""
tf.logging.info("Shutting down train data creation subprocess.")
proc.send_signal(signal.SIGINT)
time.sleep(1)
if proc.returncode is not None:
return # SIGINT was handled successfully within 1 sec
# Otherwise another second of grace period and then forcibly kill the process.
time.sleep(1)
proc.terminate()
def instantiate_pipeline(dataset, data_dir, batch_size, eval_batch_size,
num_data_readers=None, num_neg=4, epochs_per_cycle=1,
match_mlperf=False):
"""Preprocess data and start negative generation subprocess."""
tf.logging.info("Beginning data preprocessing.")
ncf_dataset = construct_cache(dataset=dataset, data_dir=data_dir,
num_data_readers=num_data_readers,
match_mlperf=match_mlperf)
tf.logging.info("Creating training file subprocess.")
subproc_env = os.environ.copy()
# The subprocess uses TensorFlow for tf.gfile, but it does not need GPU
# resources and by default will try to allocate GPU memory. This would cause
# contention with the main training process.
subproc_env["CUDA_VISIBLE_DEVICES"] = ""
# By limiting the number of workers we guarantee that the worker
# pool underlying the training generation doesn't starve other processes.
num_workers = int(multiprocessing.cpu_count() * 0.75) or 1
subproc_args = popen_helper.INVOCATION + [
"--data_dir", data_dir,
"--cache_id", str(ncf_dataset.cache_paths.cache_id),
"--num_neg", str(num_neg),
"--num_train_positives", str(ncf_dataset.num_train_positives),
"--num_items", str(ncf_dataset.num_items),
"--num_readers", str(ncf_dataset.num_data_readers),
"--epochs_per_cycle", str(epochs_per_cycle),
"--train_batch_size", str(batch_size),
"--eval_batch_size", str(eval_batch_size),
"--num_workers", str(num_workers),
"--spillover", "True", # This allows the training input function to
# guarantee batch size and significantly improves
# performance. (~5% increase in examples/sec on
# GPU, and needed for TPU XLA.)
"--redirect_logs", "True",
"--seed", str(int(stat_utils.random_int32()))
]
tf.logging.info(
"Generation subprocess command: {}".format(" ".join(subproc_args)))
proc = subprocess.Popen(args=subproc_args, shell=False, env=subproc_env)
atexit.register(_shutdown, proc=proc)
atexit.register(tf.gfile.DeleteRecursively,
ncf_dataset.cache_paths.cache_root)
return ncf_dataset
def make_deserialize(params, batch_size, training=False):
"""Construct deserialize function for training and eval fns."""
feature_map = {
movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
}
if training:
feature_map["labels"] = tf.FixedLenFeature([], dtype=tf.string)
def deserialize(examples_serialized):
"""Called by Dataset.map() to convert batches of records to tensors."""
features = tf.parse_single_example(examples_serialized, feature_map)
users = tf.reshape(tf.decode_raw(
features[movielens.USER_COLUMN], tf.int32), (batch_size,))
items = tf.reshape(tf.decode_raw(
features[movielens.ITEM_COLUMN], tf.uint16), (batch_size,))
if params["use_tpu"]:
items = tf.cast(items, tf.int32) # TPU doesn't allow uint16 infeed.
if not training:
return {
movielens.USER_COLUMN: users,
movielens.ITEM_COLUMN: items,
}
labels = tf.reshape(tf.cast(tf.decode_raw(
features["labels"], tf.int8), tf.bool), (batch_size,))
return {
movielens.USER_COLUMN: users,
movielens.ITEM_COLUMN: items,
}, labels
return deserialize
def make_train_input_fn(ncf_dataset):
# type: (NCFDataset) -> (typing.Callable, str, int)
"""Construct training input_fn for the current epoch."""
if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
raise ValueError("Generation subprocess did not start correctly. Data will "
"not be available; exiting to avoid waiting forever.")
train_epoch_dir = ncf_dataset.cache_paths.train_epoch_dir
while not tf.gfile.Exists(train_epoch_dir):
tf.logging.info("Waiting for {} to exist.".format(train_epoch_dir))
time.sleep(1)
train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
while not train_data_dirs:
tf.logging.info("Waiting for data folder to be created.")
time.sleep(1)
train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
train_data_dirs.sort() # names are zfilled so that
# lexicographic sort == numeric sort
record_dir = os.path.join(train_epoch_dir, train_data_dirs[0])
ready_file = os.path.join(record_dir, rconst.READY_FILE)
while not tf.gfile.Exists(ready_file):
tf.logging.info("Waiting for records in {} to be ready".format(record_dir))
time.sleep(1)
with tf.gfile.Open(ready_file, "r") as f:
epoch_metadata = json.load(f)
# The data pipeline uses spillover to guarantee static batch sizes. This
# means that an extra batch will need to be run every few epochs. TPUs
# require that the number of batches to be run is known at the time that
# estimator.train() is called, so having the generation pipeline report
# number of batches guarantees that this count is correct.
batch_count = epoch_metadata["batch_count"]
def input_fn(params):
"""Generated input_fn for the given epoch."""
batch_size = params["batch_size"]
if epoch_metadata["batch_size"] != batch_size:
raise ValueError(
"Records were constructed with batch size {}, but input_fn was given "
"a batch size of {}. This will result in a deserialization error in "
"tf.parse_single_example."
.format(epoch_metadata["batch_size"], batch_size))
record_files = tf.data.Dataset.list_files(
os.path.join(record_dir, rconst.TRAIN_RECORD_TEMPLATE.format("*")),
shuffle=False)
interleave = tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
cycle_length=4,
block_length=100000,
sloppy=True,
prefetch_input_elements=4,
)
deserialize = make_deserialize(params, batch_size, True)
dataset = record_files.apply(interleave)
dataset = dataset.map(deserialize, num_parallel_calls=4)
return dataset.prefetch(32)
return input_fn, record_dir, batch_count
def make_pred_input_fn(ncf_dataset):
# type: (NCFDataset) -> typing.Callable
"""Construct input_fn for metric evaluation."""
def input_fn(params):
"""Input function based on eval batch size."""
# Estimator has "eval_batch_size" included in the params, but TPUEstimator
# populates "batch_size" to the appropriate value.
batch_size = params.get("eval_batch_size") or params["batch_size"]
record_file = ncf_dataset.cache_paths.eval_record_template.format(
batch_size)
while not tf.gfile.Exists(record_file):
tf.logging.info(
"Waiting for eval data to be written to {}".format(record_file))
time.sleep(1)
dataset = tf.data.TFRecordDataset(record_file)
deserialize = make_deserialize(params, batch_size, False)
dataset = dataset.map(deserialize, num_parallel_calls=4)
return dataset.prefetch(16)
return input_fn