diff --git a/css/local.css b/css/local.css index f1a3262..11dd941 100644 --- a/css/local.css +++ b/css/local.css @@ -1,208 +1,203 @@ body { - padding-top: 70px; -} -table.nostretch { - width=100% -} -.nostretch td { - class='block' -} -.nostretch tr td{ - width:1%; - white-space:nowrap; -} - -html { - scroll-padding-top: 70px; -} - -ol.hierarchy { - min-height: 40px; - background-color: #f5f5f5; - border: 1px solid #e3e3e3; - border-radius: 3px; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); -} - -.smallcaps { - font-variant: small-caps; -} -.well .sidebar { - padding: 8px 0 -} -.sidebar a { - padding: 0px,0px,0px,0px -} -.varlist>tbody>tr>td { - padding-left: 3px; - padding-right: 3px; -} -.varlist>tbody>tr>td:first-child, .varlist>thead>tr>td:first-child { - padding-left: 8px; -} -.varlist>tbody>td>td:last-child, .varlist>thead>tr>td:last-child { - padding-right: 8px; -} - -.highlight pre { - overflow-x: auto; - overflow-wrap: normal; - white-space: pre -} - -/* .hl is for when line numbers are included, .highlight is for all + padding-top: 70px; + } + table.nostretch { + width=100% + } + .nostretch td { + class='block' + } + .nostretch tr td{ + width:1%; + white-space:nowrap; + } + + html { + scroll-padding-top: 70px; + } + + ol.hierarchy { + min-height: 40px; + background-color: #f5f5f5; + border: 1px solid #e3e3e3; + border-radius: 3px; + -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); + box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); + } + + .smallcaps { + font-variant: small-caps; + } + .well .sidebar { + padding: 8px 0 + } + .sidebar a { + padding: 0px,0px,0px,0px + } + .varlist>tbody>tr>td { + padding-left: 3px; + padding-right: 3px; + } + .varlist>tbody>tr>td:first-child, .varlist>thead>tr>td:first-child { + padding-left: 8px; + } + .varlist>tbody>td>td:last-child, .varlist>thead>tr>td:last-child { + padding-right: 8px; + } + + .highlight pre { + overflow-x: auto; + overflow-wrap: normal; + white-space: pre + } + + /* .hl is for when line numbers are included, .highlight is for all other cases. */ -.hl pre { - counter-reset: line-numbering; - overflow-x: auto; - overflow-wrap: normal; - white-space: pre; - padding: 0; - padding-right: 9.5px; - overflow-y: hidden; - padding-bottom: 9.5px; -} - -.hl pre a::before { - content: counter(line-numbering); - counter-increment: line-numbering; - padding-right: 0.7em; /* space after numbers */ - margin-top: 4.5em; - width: 60px; - text-align: right; - opacity: 0.7; - display: inline-block; - color: #aaa; - background: #eee; - margin-right: 10px; - border-right: 1px solid #ccc; - -webkit-touch-callout: none; - -webkit-user-select: none; - -khtml-user-select: none; - -moz-user-select: none; - -ms-user-select: none; - user-select: none; -} - -.hl pre a:first-of-type::before { - padding-top: 9.5px; -} - -.hl pre a:last-of-type::before { - padding-bottom: 9.5px; -} - -.hl pre a:only-of-type::before { - padding: 9.5px; -} - -.hl pre a { + .hl pre { + counter-reset: line-numbering; + overflow-x: auto; + overflow-wrap: normal; + white-space: pre; + padding: 0; + padding-right: 9.5px; + overflow-y: hidden; + padding-bottom: 9.5px; + } + + .hl pre a::before { + content: counter(line-numbering); + counter-increment: line-numbering; + padding-right: 0.7em; /* space after numbers */ + margin-top: 4.5em; + width: 60px; + text-align: right; + opacity: 0.7; + display: inline-block; + color: #aaa; + background: #eee; + margin-right: 10px; + border-right: 1px solid #ccc; + -webkit-touch-callout: none; + -webkit-user-select: none; + -khtml-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; + } + + .hl pre a:first-of-type::before { + padding-top: 9.5px; + } + + .hl pre a:last-of-type::before { + padding-bottom: 9.5px; + } + + .hl pre a:only-of-type::before { + padding: 9.5px; + } + + .hl pre a { display: inline-block; height: 4.5em; margin: -4.5em 0 0; -} -.codesum h3 { - margin-top: 2px; - margin-bottom: 2px; -} - -h1.inline, h2.inline, h3.inline { - display: inline; -} - -.depwarn { - float: right; -} - -.anchor { - position: absolute; - margin: -4.5em; - visibility:hidden; -} - -.alert { - margin-left: 5px; - margin-right: 5px; - margin-top: 5px; -} - -.alert-title { - margin-top: 0; - color: inherit; -} - -div.toc { - font-size: 14.73px; - padding-left: 0px; - padding-right: 0px; -} - -div.toc a { - padding-left: 20px; - padding-right: 20px; - margin-right: 15px; - padding-top: 5px; - padding-bottom: 5px; -} - -div.toc li { - font-size: 0.95em; - padding-left: 15px; -} - -div.toc li.title { - font-size: 1em; -} - -div.toc hr { - margin-top: 12px; - margin-bottom: 10px; -} - -.in-well { - padding: 0px 0px; - margin-bottom: 0px; - float:right; -} - -table tr.submod>td { - border-top: none; - font-size: 13.5px; -} - -.graph-help { - font-size: 10px; -} - -.depgraph { - width: 100%; - max-width: 1140px; -} - -#sidebar a { - white-space: nowrap; - overflow: hidden; - text-overflow: ellipsis; -} - -.highlighttable { - width: auto; - table-layout: fixed; -} - -ul.checklist { - list-style-type: none; -} - -ul.checklist input[type="checkbox"] { - margin-left: -20.8px; - margin-right: 4.55px; -} - -.gitter-chat-embed { - z-index: 100000; -} + } + .codesum h3 { + margin-top: 2px; + margin-bottom: 2px; + } + + h1.inline, h2.inline, h3.inline { + display: inline; + } + + .depwarn { + float: right; + } + + .anchor { + position: absolute; + margin: -4.5em; + visibility:hidden; + } + + .alert { + margin-left: 5px; + margin-right: 5px; + margin-top: 5px; + } + + div.toc { + font-size: 14.73px; + padding-left: 0px; + padding-right: 0px; + } + + div.toc a { + padding-left: 20px; + padding-right: 20px; + margin-right: 15px; + padding-top: 5px; + padding-bottom: 5px; + } + + div.toc li { + font-size: 0.95em; + padding-left: 15px; + } + + div.toc li.title { + font-size: 1em; + } + + div.toc hr { + margin-top: 12px; + margin-bottom: 10px; + } + + .in-well { + padding: 0px 0px; + margin-bottom: 0px; + float:right; + } + + table tr.submod>td { + border-top: none; + font-size: 13.5px; + } + + .graph-help { + font-size: 10px; + } + + .depgraph { + width: 100%; + max-width: 1140px; + } + + #sidebar a { + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; + } + + .highlighttable { + width: auto; + table-layout: fixed; + } + + ul.checklist { + list-style-type: none; + } + + ul.checklist input[type="checkbox"] { + margin-left: -20.8px; + margin-right: 4.55px; + } + + .gitter-chat-embed { + z-index: 100000; + } table.graph { text-align: center; @@ -210,8 +205,8 @@ table.graph { .graph td.root { - border:2px solid black; - padding:10px; + border:2px solid black; + padding:10px; } .graph td.triangle-right:after { @@ -231,15 +226,15 @@ table.graph { } .graph td.node { - color: white; - padding:10px; - border-style: solid; - border-width: 3px 0px 3px 0px; - border-color: white; + color: white; + padding:10px; + border-style: solid; + border-width: 3px 0px 3px 0px; + border-color: white; } .graph td.node a{ - color: white; + color: white; } .graph td.dashedText, @@ -287,12 +282,3 @@ table.graph { td, th { padding-right: 10px; } - -.nav>li>a { - padding-left: 10px; - padding-right: 10px; -} - -.nav > .nav { - margin-left: 16px; -} diff --git a/css/pygments.css b/css/pygments.css index c4b2fd9..4a3a8d8 100644 --- a/css/pygments.css +++ b/css/pygments.css @@ -1,75 +1,61 @@ -pre { line-height: 125%; } -td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -.codehilite .hll { background-color: #ffffcc } -.codehilite { background: #f8f8f8; } -.codehilite .c { color: #3D7B7B; font-style: italic } /* Comment */ -.codehilite .err { border: 1px solid #FF0000 } /* Error */ -.codehilite .k { color: #008000; font-weight: bold } /* Keyword */ -.codehilite .o { color: #666666 } /* Operator */ -.codehilite .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ -.codehilite .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ -.codehilite .cp { color: #9C6500 } /* Comment.Preproc */ -.codehilite .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ -.codehilite .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ -.codehilite .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ -.codehilite .gd { color: #A00000 } /* Generic.Deleted */ -.codehilite .ge { font-style: italic } /* Generic.Emph */ -.codehilite .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ -.codehilite .gr { color: #E40000 } /* Generic.Error */ -.codehilite .gh { color: #000080; font-weight: bold } /* Generic.Heading */ -.codehilite .gi { color: #008400 } /* Generic.Inserted */ -.codehilite .go { color: #717171 } /* Generic.Output */ -.codehilite .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ -.codehilite .gs { font-weight: bold } /* Generic.Strong */ -.codehilite .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ -.codehilite .gt { color: #0044DD } /* Generic.Traceback */ -.codehilite .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ -.codehilite .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ -.codehilite .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ -.codehilite .kp { color: #008000 } /* Keyword.Pseudo */ -.codehilite .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ -.codehilite .kt { color: #B00040 } /* Keyword.Type */ -.codehilite .m { color: #666666 } /* Literal.Number */ -.codehilite .s { color: #BA2121 } /* Literal.String */ -.codehilite .na { color: #687822 } /* Name.Attribute */ -.codehilite .nb { color: #008000 } /* Name.Builtin */ -.codehilite .nc { color: #0000FF; font-weight: bold } /* Name.Class */ -.codehilite .no { color: #880000 } /* Name.Constant */ -.codehilite .nd { color: #AA22FF } /* Name.Decorator */ -.codehilite .ni { color: #717171; font-weight: bold } /* Name.Entity */ -.codehilite .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ -.codehilite .nf { color: #0000FF } /* Name.Function */ -.codehilite .nl { color: #767600 } /* Name.Label */ -.codehilite .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ -.codehilite .nt { color: #008000; font-weight: bold } /* Name.Tag */ -.codehilite .nv { color: #19177C } /* Name.Variable */ -.codehilite .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ -.codehilite .w { color: #bbbbbb } /* Text.Whitespace */ -.codehilite .mb { color: #666666 } /* Literal.Number.Bin */ -.codehilite .mf { color: #666666 } /* Literal.Number.Float */ -.codehilite .mh { color: #666666 } /* Literal.Number.Hex */ -.codehilite .mi { color: #666666 } /* Literal.Number.Integer */ -.codehilite .mo { color: #666666 } /* Literal.Number.Oct */ -.codehilite .sa { color: #BA2121 } /* Literal.String.Affix */ -.codehilite .sb { color: #BA2121 } /* Literal.String.Backtick */ -.codehilite .sc { color: #BA2121 } /* Literal.String.Char */ -.codehilite .dl { color: #BA2121 } /* Literal.String.Delimiter */ -.codehilite .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ -.codehilite .s2 { color: #BA2121 } /* Literal.String.Double */ -.codehilite .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ -.codehilite .sh { color: #BA2121 } /* Literal.String.Heredoc */ -.codehilite .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ -.codehilite .sx { color: #008000 } /* Literal.String.Other */ -.codehilite .sr { color: #A45A77 } /* Literal.String.Regex */ -.codehilite .s1 { color: #BA2121 } /* Literal.String.Single */ -.codehilite .ss { color: #19177C } /* Literal.String.Symbol */ -.codehilite .bp { color: #008000 } /* Name.Builtin.Pseudo */ -.codehilite .fm { color: #0000FF } /* Name.Function.Magic */ -.codehilite .vc { color: #19177C } /* Name.Variable.Class */ -.codehilite .vg { color: #19177C } /* Name.Variable.Global */ -.codehilite .vi { color: #19177C } /* Name.Variable.Instance */ -.codehilite .vm { color: #19177C } /* Name.Variable.Magic */ -.codehilite .il { color: #666666 } /* Literal.Number.Integer.Long */ +pre .hll { background-color: #ffffcc } +pre .c { color: #408080; font-style: italic } /* Comment */ +pre .err { border: 1px solid #FF0000 } /* Error */ +pre .k { color: #008000; font-weight: bold } /* Keyword */ +pre .o { color: #666666 } /* Operator */ +pre .cm { color: #408080; font-style: italic } /* Comment.Multiline */ +pre .cp { color: #BC7A00 } /* Comment.Preproc */ +pre .c1 { color: #408080; font-style: italic } /* Comment.Single */ +pre .cs { color: #408080; font-style: italic } /* Comment.Special */ +pre .gd { color: #A00000 } /* Generic.Deleted */ +pre .ge { font-style: italic } /* Generic.Emph */ +pre .gr { color: #FF0000 } /* Generic.Error */ +pre .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +pre .gi { color: #00A000 } /* Generic.Inserted */ +pre .go { color: #888888 } /* Generic.Output */ +pre .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +pre .gs { font-weight: bold } /* Generic.Strong */ +pre .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +pre .gt { color: #0044DD } /* Generic.Traceback */ +pre .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +pre .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +pre .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +pre .kp { color: #008000 } /* Keyword.Pseudo */ +pre .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +pre .kt { color: #B00040 } /* Keyword.Type */ +pre .m { color: #666666 } /* Literal.Number */ +pre .s { color: #BA2121 } /* Literal.String */ +pre .na { color: #7D9029 } /* Name.Attribute */ +pre .nb { color: #008000 } /* Name.Builtin */ +pre .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +pre .no { color: #880000 } /* Name.Constant */ +pre .nd { color: #AA22FF } /* Name.Decorator */ +pre .ni { color: #999999; font-weight: bold } /* Name.Entity */ +pre .ne { color: #D2413A; font-weight: bold } /* Name.Exception */ +pre .nf { color: #0000FF } /* Name.Function */ +pre .nl { color: #A0A000 } /* Name.Label */ +pre .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +pre .nt { color: #008000; font-weight: bold } /* Name.Tag */ +pre .nv { color: #19177C } /* Name.Variable */ +pre .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +pre .w { color: #bbbbbb } /* Text.Whitespace */ +pre .mf { color: #666666 } /* Literal.Number.Float */ +pre .mh { color: #666666 } /* Literal.Number.Hex */ +pre .mi { color: #666666 } /* Literal.Number.Integer */ +pre .mo { color: #666666 } /* Literal.Number.Oct */ +pre .sb { color: #BA2121 } /* Literal.String.Backtick */ +pre .sc { color: #BA2121 } /* Literal.String.Char */ +pre .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +pre .s2 { color: #BA2121 } /* Literal.String.Double */ +pre .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */ +pre .sh { color: #BA2121 } /* Literal.String.Heredoc */ +pre .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */ +pre .sx { color: #008000 } /* Literal.String.Other */ +pre .sr { color: #BB6688 } /* Literal.String.Regex */ +pre .s1 { color: #BA2121 } /* Literal.String.Single */ +pre .ss { color: #19177C } /* Literal.String.Symbol */ +pre .bp { color: #008000 } /* Name.Builtin.Pseudo */ +pre .vc { color: #19177C } /* Name.Variable.Class */ +pre .vg { color: #19177C } /* Name.Variable.Global */ +pre .vi { color: #19177C } /* Name.Variable.Instance */ +pre .il { color: #666666 } /* Literal.Number.Integer.Long */ diff --git a/index.html b/index.html index 9f18d0f..36c60eb 100644 --- a/index.html +++ b/index.html @@ -10,57 +10,81 @@ FSTATS - + - - + + + + + + -
- -
+ + + + +
-
+

FSTATS is a modern Fortran statistical library containing routines for computing basic statistical properties, hypothesis testing, regression, special functions, and experimental design.

Find us on…

@@ -69,24 +93,24 @@

-
+

FSTATS

-
-
-

Developer Info

-

Jason Christopherson

-

-
-
+
+
+

Developer Info

+

Jason Christopherson

+ +
+

+
@@ -66,37 +88,33 @@

anova Interface

-
-
-
+
+
+ -
- +
@@ -124,13 +142,14 @@

Contents

-
- -
-
+
+ +
+
anova_1_factor anova_2_factor anova_model_fit @@ -138,7 +157,6 @@

Module Procedures

-
@@ -151,51 +169,51 @@

public interface anova

set.

The following example illustrates a single-factor ANOVA on a data set.

-
program example
-    use iso_fortran_env
-    use fstats
-    implicit none
+
program example
+    use iso_fortran_env
+    use fstats
+    implicit none
 
     ! Local Variables
-    character, parameter :: tab = achar(9)
-    real(real64) :: x(10, 2)
-    type(single_factor_anova_table) :: tbl
+    character, parameter :: tab = achar(9)
+    real(real64) :: x(10, 2)
+    type(single_factor_anova_table) :: tbl
 
     ! Define the data
-    x = reshape( &
-        [ &
-            3.086d3, 3.082d3, 3.069d3, 3.072d3, 3.045d3, 3.070d3, 3.079d3, &
-            3.050d3, 3.062d3, 3.062d3, 3.075d3, 3.061d3, 3.063d3, 3.038d3, &
-            3.070d3, 3.062d3, 3.070d3, 3.049d3, 3.042d3, 3.063d3 &
-        ], &
-        [10, 2] &
-    )
+    x = reshape( &
+        [ &
+            3.086d3, 3.082d3, 3.069d3, 3.072d3, 3.045d3, 3.070d3, 3.079d3, &
+            3.050d3, 3.062d3, 3.062d3, 3.075d3, 3.061d3, 3.063d3, 3.038d3, &
+            3.070d3, 3.062d3, 3.070d3, 3.049d3, 3.042d3, 3.063d3 &
+        ], &
+        [10, 2] &
+    )
 
     ! Perform the ANOVA
-    tbl = anova(x)
+    tbl = anova(x)
 
     ! Print out the table
-    print '(A)', "Description" // tab // "DOF" // tab // "Sum of Sq." // &
-        tab // "Variance" // tab // "F-Stat" // tab // "P-Value"
-    print '(AF2.0AF5.1AF5.1AF5.3AF5.3)', "Main Factor: " // tab, &
-        tbl%main_factor%dof, tab, &
-        tbl%main_factor%sum_of_squares, tab // tab, &
-        tbl%main_factor%variance, tab // tab, &
-        tbl%main_factor%f_statistic, tab, &
-        tbl%main_factor%probability
-
-    print '(AF3.0AF6.1AF5.1)', "Within: " // tab, &
-        tbl%within_factor%dof, tab, &
-        tbl%within_factor%sum_of_squares, tab // tab, &
-        tbl%within_factor%variance
-
-    print '(AF3.0AF6.1AF5.1)', "Total: " // tab // tab, &
-        tbl%total_dof, tab, &
-        tbl%total_sum_of_squares, tab // tab, &
-        tbl%total_variance
-
-    print '(AF6.1)', "Overall Mean: ", tbl%overall_mean
-end program
+    print '(A)', "Description" // tab // "DOF" // tab // "Sum of Sq." // &
+        tab // "Variance" // tab // "F-Stat" // tab // "P-Value"
+    print '(AF2.0AF5.1AF5.1AF5.3AF5.3)', "Main Factor: " // tab, &
+        tbl%main_factor%dof, tab, &
+        tbl%main_factor%sum_of_squares, tab // tab, &
+        tbl%main_factor%variance, tab // tab, &
+        tbl%main_factor%f_statistic, tab, &
+        tbl%main_factor%probability
+
+    print '(AF3.0AF6.1AF5.1)', "Within: " // tab, &
+        tbl%within_factor%dof, tab, &
+        tbl%within_factor%sum_of_squares, tab // tab, &
+        tbl%within_factor%variance
+
+    print '(AF3.0AF6.1AF5.1)', "Total: " // tab // tab, &
+        tbl%total_dof, tab, &
+        tbl%total_sum_of_squares, tab // tab, &
+        tbl%total_variance
+
+    print '(AF6.1)', "Overall Mean: ", tbl%overall_mean
+end program
 

The above program produces the following output.

@@ -215,29 +233,69 @@

public interface anova

  • NIST - Two Way ANOVA

  • +
    +

    Contents

    + + + + + + + + + + + + + + + + + + + + + + +
    +
    +

    Module Procedures

    -
    -

    private function anova_1_factor(x) result(rst) +
    +

    private function anova_1_factor(x) result(rst)

    -
    +

    Performs an analysis of variance (ANOVA) on the supplied data set.

    Arguments

    - - - - - + + + + + @@ -256,33 +314,33 @@

    Arguments

    Return Value - type(single_factor_anova_table) + type(single_factor_anova_table)

    A single_factor_anova_table instance containing the ANOVA results.

    -
    -

    private function anova_2_factor(x) result(rst) +
    +

    private function anova_2_factor(x) result(rst)

    -
    +

    Performs an analysis of variance (ANOVA) on the supplied data set.

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + real(kind=real64), intent(in)
    - - - - - + + + + + @@ -301,33 +359,33 @@

    Arguments

    Return Value - type(two_factor_anova_table) + type(two_factor_anova_table)

    A two_factor_anova_table instance containing the ANOVA results.

    -
    -

    private function anova_model_fit(nmodelparams, ymeas, ymod, err) result(rst) +
    +

    private function anova_model_fit(nmodelparams, ymeas, ymod, err) result(rst)

    -
    +

    Performs an analysis of variance (ANOVA) on the supplied data set.

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + real(kind=real64), intent(in)
    - - - - - + + + + + @@ -342,7 +400,7 @@

    Arguments

    @@ -357,7 +415,7 @@

    Arguments

    @@ -372,7 +430,7 @@

    Arguments

    @@ -395,7 +453,7 @@

    Arguments

    Return Value - type(single_factor_anova_table) + type(single_factor_anova_table)

    A single_factor_anova_table instance containing the ANOVA results.

    @@ -408,27 +466,32 @@

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - - - + + + + + + + - + + + + + + -
    - -
    + + + + +
    @@ -66,37 +89,33 @@

    bootstrap_resampling_routine Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -125,7 +144,6 @@

    Contents

    - None @@ -144,16 +162,16 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + integer(kind=int32), intent(in)
    - + real(kind=real64), intent(in)
    - + real(kind=real64), intent(in)
    - + class(errors), intent(inout),
    - - - - - + + + + + @@ -197,27 +215,32 @@

    Description

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + + + +
    @@ -66,37 +89,33 @@

    bootstrap_statistic_routine Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -125,7 +144,6 @@

    Contents

    - None @@ -144,16 +162,16 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + real(kind=real64), intent(in),
    - - - - - + + + + + @@ -169,7 +187,7 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + real(kind=real64), intent(in),
    -

    Return Value real(kind=real64)

    +

    Return Value real(kind=real64)

    The resulting statistic.

    Description

    Defines the signature of a function for computing the desired @@ -183,27 +201,32 @@

    Description

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - - - + + + + + + + - + + + + + + -
    - -
    + + +
    +
    +
    @@ -66,37 +88,33 @@

    box_muller_sample Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -124,20 +142,20 @@

    Contents

    -
    - -
    - @@ -149,13 +167,52 @@

    public interface box_muller_sample

    Generates random, normally distributed values via the Box-Muller transform.


    +
    +

    Contents

    + + + + + + + + + + + + + + + + + + + + + + +
    +
    +

    Module Procedures

    -
    -

    private function box_muller_sample_scalar(mu, sigma) result(rst) +
    +

    private function box_muller_sample_scalar(mu, sigma) result(rst)

    -
    +

    Generates a pair of independent, standard, normally distributed random values using the Box-Muller transform.

    @@ -163,16 +220,16 @@

    Arguments

    - - - - - + + + + + @@ -187,7 +244,7 @@

    Arguments

    @@ -212,10 +269,10 @@

    -
    -

    private function box_muller_array(mu, sigma, n) result(rst) +
    +

    private function box_muller_array(mu, sigma, n) result(rst)

    -
    +

    Generates an array of normally distributed random values sampled by the Box-Muller transform.

    @@ -223,16 +280,16 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + real(kind=real64), intent(in)
    - + real(kind=real64), intent(in)
    - - - - - + + + + + @@ -247,7 +304,7 @@

    Arguments

    @@ -262,7 +319,7 @@

    Arguments

    @@ -293,27 +350,32 @@

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + + + +
    @@ -66,37 +88,33 @@

    confidence_interval Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -124,20 +142,20 @@

    Contents

    -
    - -
    - @@ -152,30 +170,69 @@

    public interface confidence_interval

  • Wikipedia

  • +
    +

    Contents

    + + + + + + + + + + + + + + + + + + + + + + +
    +
    +

    Module Procedures

    -
    -

    private pure function confidence_interval_scalar(dist, alpha, s, n) result(rst) +
    +

    private pure function confidence_interval_scalar(dist, alpha, s, n) result(rst)

    -
    +

    Computes the confidence interval for the specified distribution.

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + real(kind=real64), intent(in)
    - + real(kind=real64), intent(in)
    - + integer(kind=int32), intent(in)
    - - - - - + + + + + @@ -206,7 +263,7 @@

    Arguments

    @@ -221,7 +278,7 @@

    Arguments

    @@ -246,27 +303,27 @@

    -
    -

    private pure function confidence_interval_array(dist, alpha, x) result(rst) +
    +

    private pure function confidence_interval_array(dist, alpha, x) result(rst)

    -
    +

    Computes the confidence interval for the specified distribution.

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - - class(distribution), + + class(distribution), intent(in) @@ -190,7 +247,7 @@

    Arguments

    - + real(kind=real64), intent(in)
    - + real(kind=real64), intent(in)
    - + integer(kind=int32), intent(in)
    - - - - - + + + + + @@ -297,7 +354,7 @@

    Arguments

    @@ -328,27 +385,32 @@

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + + + +
    @@ -66,37 +89,33 @@

    distribution_function Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -125,7 +144,6 @@

    Contents

    - None @@ -144,17 +162,17 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - - class(distribution), + + class(distribution), intent(in) @@ -281,7 +338,7 @@

    Arguments

    - + real(kind=real64), intent(in)
    - + real(kind=real64), intent(in)
    - - - - - + + + + + @@ -184,7 +202,7 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - - class(distribution), + + class(distribution), intent(in) @@ -168,7 +186,7 @@

    Arguments

    - + real(kind=real64), intent(in)
    -

    Return Value real(kind=real64)

    +

    Return Value real(kind=real64)

    The value of the function.

    Description

    Defines the interface for a probability distribution function.

    @@ -197,27 +215,32 @@

    Description

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +
    +
    +
    @@ -66,37 +89,33 @@

    distribution_property Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -125,7 +144,6 @@

    Contents

    - None @@ -144,17 +162,17 @@

    Arguments

    - - - - - + + + + +
    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - - class(distribution), + + class(distribution), intent(in) @@ -169,7 +187,7 @@

    Arguments

    -

    Return Value real(kind=real64)

    +

    Return Value real(kind=real64)

    The property value.

    Description

    Computes the value of a distribution property.

    @@ -182,27 +200,32 @@

    Description

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - - - + + + + + + + - + + + + + + -
    - -
    + + +
    +
    +
    @@ -66,37 +88,33 @@

    doe_evaluate_model Interface

    -
    -
    -
    + @@ -124,20 +142,20 @@

    Contents

    -
    - -
    - @@ -148,13 +166,52 @@

    Module Procedures

    public interface doe_evaluate_model

    +
    +

    Contents

    + + + + + + + + + + + + + + + + + + + + + + +
    +
    +

    Module Procedures

    -
    -

    private function doe_evaluate_model_1(nway, beta, x, map, err) result(rst) +
    +

    private function doe_evaluate_model_1(nway, beta, x, map, err) result(rst)

    -
    +

    Evaluates the model of the following form.

    - - + + + + + + + - + + + + + + -

    - -
    + + +
    +
    +
    @@ -66,37 +89,33 @@

    iteration_update Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -125,7 +144,6 @@

    Contents

    - None @@ -144,16 +162,16 @@

    Arguments

    - - - - - + + + + + @@ -163,7 +181,7 @@

    Arguments

    @@ -171,14 +189,14 @@

    Arguments

    real(kind=real64), - + - + @@ -186,29 +204,29 @@

    Arguments

    real(kind=real64), - + - + - + - + @@ -216,19 +234,22 @@

    Arguments

    real(kind=real64), - + - +
    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + integer(kind=int32), intent(in) :: iter - +

    The current iteration number.

    intent(in)intent(in), - + dimension(:) ::funvals(:)funvals - +

    The function values.

    intent(in)intent(in), - + dimension(:) ::resid(:)resid - +

    The residuals.

    - + real(kind=real64), intent(in)intent(in), - + dimension(:) ::params(:)params - +

    The model parameters.

    intent(in)intent(in), - + dimension(:) ::step(:)step - +

    Step sizes for each parameter.

    +

    Description

    +

    Defines a routine for providing updates about an iteration +process.


    @@ -238,27 +259,32 @@

    Arguments

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +
    +
    +
    @@ -66,37 +89,33 @@

    multivariate_distribution_function Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -125,7 +144,6 @@

    Contents

    - None @@ -144,17 +162,17 @@

    Arguments

    - - - - - + + + + + @@ -184,7 +202,7 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - - class(multivariate_distribution), + + class(multivariate_distribution), intent(in) @@ -168,7 +186,7 @@

    Arguments

    - + real(kind=real64), intent(in),
    -

    Return Value real(kind=real64)

    +

    Return Value real(kind=real64)

    The value of the function.

    Description

    Defines an interface for a multivariate probability distribution @@ -198,27 +216,32 @@

    Description

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +
    +
    +
    @@ -66,37 +88,33 @@

    pooled_variance Interface

    -
    -
    -
    + @@ -124,20 +142,20 @@

    Contents

    -
    - -
    - @@ -148,29 +166,68 @@

    Module Procedures

    public interface pooled_variance

    Computes the pooled estimate of variance.


    +
    +

    Contents

    + + + + + + + + + + + + + + + + + + + + + + +
    +
    +

    Module Procedures

    -
    -

    private pure function pooled_variance_1(si, ni) result(rst) +
    +

    private pure function pooled_variance_1(si, ni) result(rst)

    -
    +

    Computes the pooled estimate of variance.

    Arguments

    - - - - - + + + + + @@ -186,7 +243,7 @@

    Arguments

    @@ -212,27 +269,27 @@

    -
    -

    private pure function pooled_variance_2(x) result(rst) +
    +

    private pure function pooled_variance_2(x) result(rst)

    -
    +

    Computes the pooled estimate of variance.

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - + real(kind=real64), intent(in),
    - + integer(kind=int32), intent(in),
    - - - - - + + + + + + + + + + + + + + + + + + + + + +
    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    - - type(array_container), + + type(array_container), intent(in), @@ -262,27 +319,32 @@

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + + + +
    @@ -66,37 +89,33 @@

    regression_function Interface

    -
    -
    -
    +
    +
    + -
    - +
    @@ -125,7 +144,6 @@

    Contents

    - None @@ -135,7 +153,7 @@

    Contents

    interface
    - public subroutine regression_function(xdata, params, resid, stop) + public subroutine regression_function(xdata, params, f, stop)

    @@ -144,11 +162,11 @@

    Arguments

    - - - - - + + + + + @@ -163,12 +181,12 @@

    Arguments

    @@ -178,12 +196,12 @@

    Arguments

    @@ -191,9 +209,10 @@

    Arguments

    dimension(:) - + @@ -208,12 +227,19 @@

    Arguments

    TypeIntentOptional AttributesNameTypeIntentOptional AttributesName
    :: xdata - +

    An N-element array containing the N independent data points.

    - + real(kind=real64), intent(in), :: params - +

    An M-element array containing the M model parameters.

    - + real(kind=real64), intent(out), ::residf - +

    An N-element array where the results of the N function +evaluations will be written.

    :: stop - +

    A mechanism to force a stop to the iteration process. If +set to true, the iteration process will terminate. If set +to false, the iteration process will continue along as +normal.

    +

    Description

    +

    Defines the interface of a subroutine computing the function +values at each of the N data points as part of a regression +analysis.


    @@ -223,27 +249,32 @@

    Arguments

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +
    +
    +
    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +
    +
    +
    @@ -68,89 +90,26 @@

    Modules

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    ModuleSource FileDescription
    fstatsfstats.f90

    FSTATS is a modern Fortran statistical library containing routines for +

    fstatsfstats.f90

    FSTATS is a modern Fortran statistical library containing routines for computing basic statistical properties, hypothesis testing, regression, -special functions, and experimental design.

    fstats_allanfstats_allan.f90
    fstats_anovafstats_anova.f90
    fstats_bootstrapfstats_bootstrap.f90
    fstats_descriptive_statisticsfstats_descriptive_statistics.f90
    fstats_distributionsfstats_distributions.f90
    fstats_errorsfstats_errors.f90
    fstats_experimental_designfstats_experimental_design.f90
    fstats_helper_routinesfstats_helper_routines.f90
    fstats_hypothesisfstats_hypothesis.f90
    fstats_mcmcfstats_mcmc.f90
    fstats_regressionfstats_regression.f90
    fstats_samplingfstats_sampling.f90
    fstats_smoothingfstats_smoothing.f90
    fstats_special_functionsfstats_special_functions.f90
    fstats_typesfstats_types.f90
    +special functions, and experimental design.

    fstats_allanfstats_allan.f90
    fstats_anovafstats_anova.f90
    fstats_bootstrapfstats_bootstrap.f90
    fstats_descriptive_statisticsfstats_descriptive_statistics.f90
    fstats_distributionsfstats_distributions.f90
    fstats_errorsfstats_errors.f90
    fstats_experimental_designfstats_experimental_design.f90
    fstats_helper_routinesfstats_helper_routines.f90
    fstats_hypothesisfstats_hypothesis.f90
    fstats_mcmcfstats_mcmc.f90
    fstats_mcmc_fittingfstats_mcmc_fitting.f90
    fstats_regressionfstats_regression.f90
    fstats_samplingfstats_sampling.f90
    fstats_smoothingfstats_smoothing.f90
    fstats_special_functionsfstats_special_functions.f90
    fstats_typesfstats_types.f90
    @@ -158,27 +117,32 @@

    Modules

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +

    +
    +
    @@ -68,389 +90,94 @@

    Procedures

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +difference in parameter.

    Read more… + + + + + + +
    ProcedureLocationProcedure TypeDescription
    adjusted_r_squaredfstats_regressionFunction

    Computes the adjusted R-squared value for a data set.

    Read more…
    allan_variancefstats_allanFunction

    Computes the Allan variance of a data set.

    Read more…
    anovafstats_anovaInterface

    Performs an analysis of variance (ANOVA) on the supplied data -set.

    Read more…
    bartletts_testfstats_hypothesisSubroutine

    Computes Bartlett's test statistic and associated probability.

    Read more…
    betafstats_special_functionsFunction

    Computes the beta function.

    Read more…
    bootstrapfstats_bootstrapFunction

    Performs a bootstrap calculation on the supplied data set for the given +

    adjusted_r_squaredfstats_regressionFunction

    Computes the adjusted R-squared value for a data set.

    Read more…
    allan_variancefstats_allanFunction

    Computes the Allan variance of a data set.

    Read more…
    anovafstats_anovaInterface

    Performs an analysis of variance (ANOVA) on the supplied data +set.

    Read more…
    bartletts_testfstats_hypothesisSubroutine

    Computes Bartlett's test statistic and associated probability.

    Read more…
    betafstats_special_functionsFunction

    Computes the beta function.

    Read more…
    bootstrapfstats_bootstrapFunction

    Performs a bootstrap calculation on the supplied data set for the given statistic. The default implementation utlizes a random resampling with replacement. Other resampling methods may be defined by specifying an -appropriate routine by means of the method input.

    bootstrap_resampling_routinefstats_bootstrapInterface
    bootstrap_statistic_routinefstats_bootstrapInterface
    box_muller_samplefstats_samplingInterface

    Generates random, normally distributed values via the Box-Muller -transform.

    calculate_regression_statisticsfstats_regressionFunction

    Computes statistics for the quality of fit for a regression -model.

    confidence_intervalfstats_hypothesisInterface

    Computes the confidence interval for the specified distribution.

    Read more…
    correlationfstats_regressionFunction

    Computes the sample correlation coefficient (an estimate to the -population Pearson correlation) as follows.

    Read more…
    covariancefstats_descriptive_statisticsFunction

    Computes the sample covariance of two data sets.

    Read more…
    covariance_matrixfstats_regressionSubroutine

    Computes the covariance matrix where +appropriate routine by means of the method input.

    bootstrap_resampling_routinefstats_bootstrapInterface
    bootstrap_statistic_routinefstats_bootstrapInterface
    box_muller_samplefstats_samplingInterface

    Generates random, normally distributed values via the Box-Muller +transform.

    calculate_regression_statisticsfstats_regressionFunction

    Computes statistics for the quality of fit for a regression +model.

    confidence_intervalfstats_hypothesisInterface

    Computes the confidence interval for the specified distribution.

    Read more…
    correlationfstats_regressionFunction

    Computes the sample correlation coefficient (an estimate to the +population Pearson correlation) as follows.

    Read more…
    covariancefstats_descriptive_statisticsFunction

    Computes the sample covariance of two data sets.

    Read more…
    covariance_matrixfstats_regressionSubroutine

    Computes the covariance matrix where and is computed -by design_matrix.

    Read more…
    design_matrixfstats_regressionSubroutine

    Computes the design matrix for the linear +by design_matrix.

    Read more…
    design_matrixfstats_regressionSubroutine

    Computes the design matrix for the linear least-squares regression problem of , where is the matrix computed here, is the vector of coefficients to be determined, and is the -vector of measured dependent variables.

    Read more…
    differencefstats_helper_routinesFunction

    Computes the difference between elements in an array.

    digammafstats_special_functionsFunction

    Computes the digamma function.

    Read more…
    distribution_functionfstats_distributionsInterface
    distribution_propertyfstats_distributionsInterface
    doe_evaluate_modelfstats_experimental_designInterface
    doe_fit_modelfstats_experimental_designFunction

    Fits a Taylor series model to the provided data.

    Read more…
    f_testfstats_hypothesisSubroutine

    Computes the F-test and returns the probability (two-tailed) that -the variances of two data sets are not significantly different.

    Read more…
    factorialfstats_helper_routinesFunction

    Computes the factorial of X.

    full_factorialfstats_experimental_designSubroutine

    Computes a table with values scaled from 1 to N describing a -full-factorial design.

    Read more…
    get_full_factorial_matrix_sizefstats_experimental_designSubroutine

    Computes the appropriate size for a full-factorial design table.

    incomplete_betafstats_special_functionsFunction

    Computes the incomplete beta function.

    Read more…
    incomplete_gamma_lowerfstats_special_functionsFunction

    Computes the lower incomplete gamma function.

    Read more…
    incomplete_gamma_upperfstats_special_functionsFunction

    Computes the upper incomplete gamma function.

    Read more…
    iteration_updatefstats_regressionInterface
    jacobianfstats_regressionSubroutine

    Computes the Jacobian matrix for a nonlinear regression problem.

    levenes_testfstats_hypothesisSubroutine

    Computes Levene's test statistic and associated probability.

    Read more…
    linear_least_squaresfstats_regressionSubroutine

    Computes a linear least-squares regression to fit a set of data.

    Read more…
    lowessfstats_smoothingSubroutine

    Computes the smoothing of a data set using a robust locally weighted +vector of measured dependent variables.

    Read more…
    differencefstats_helper_routinesFunction

    Computes the difference between elements in an array.

    digammafstats_special_functionsFunction

    Computes the digamma function.

    Read more…
    distribution_functionfstats_distributionsInterface
    distribution_propertyfstats_distributionsInterface
    doe_evaluate_modelfstats_experimental_designInterface
    doe_fit_modelfstats_experimental_designFunction

    Fits a Taylor series model to the provided data.

    Read more…
    f_testfstats_hypothesisSubroutine

    Computes the F-test and returns the probability (two-tailed) that +the variances of two data sets are not significantly different.

    Read more…
    factorialfstats_helper_routinesFunction

    Computes the factorial of X.

    full_factorialfstats_experimental_designSubroutine

    Computes a table with values scaled from 1 to N describing a +full-factorial design.

    Read more…
    get_full_factorial_matrix_sizefstats_experimental_designSubroutine

    Computes the appropriate size for a full-factorial design table.

    incomplete_betafstats_special_functionsFunction

    Computes the incomplete beta function.

    Read more…
    incomplete_gamma_lowerfstats_special_functionsFunction

    Computes the lower incomplete gamma function.

    Read more…
    incomplete_gamma_upperfstats_special_functionsFunction

    Computes the upper incomplete gamma function.

    Read more…
    iteration_updatefstats_regressionInterface
    jacobianfstats_regressionSubroutine

    Computes the Jacobian matrix for a nonlinear regression problem.

    levenes_testfstats_hypothesisSubroutine

    Computes Levene's test statistic and associated probability.

    Read more…
    linear_least_squaresfstats_regressionSubroutine

    Computes a linear least-squares regression to fit a set of data.

    Read more…
    lowessfstats_smoothingSubroutine

    Computes the smoothing of a data set using a robust locally weighted scatterplot smoothing (LOWESS) algorithm. Fitted values are computed at -each of the supplied x values.

    Read more…
    meanfstats_descriptive_statisticsFunction

    Computes the mean of the values in an array.

    medianfstats_descriptive_statisticsFunction

    Computes the median of the values in an array.

    multivariate_distribution_functionfstats_distributionsInterface
    nonlinear_least_squaresfstats_regressionSubroutine

    Performs a nonlinear regression to fit a model using a version -of the Levenberg-Marquardt algorithm.

    pooled_variancefstats_descriptive_statisticsInterface

    Computes the pooled estimate of variance.

    quantilefstats_descriptive_statisticsFunction

    Computes the specified quantile of a data set using the SAS -Method 4.

    Read more…
    r_squaredfstats_regressionFunction

    Computes the R-squared value for a data set.

    Read more…
    random_resamplefstats_bootstrapSubroutine

    Random resampling, with replacement, based upon a normal distribution.

    regression_functionfstats_regressionInterface
    regularized_betafstats_special_functionsFunction

    Computes the regularized beta function.

    Read more…
    rejection_samplefstats_samplingFunction

    Uses rejection sampling to randomly sample a target distribution.

    report_array_size_errorfstats_errorsSubroutine

    Reports an array size error.

    report_arrays_not_same_size_errorfstats_errorsSubroutine

    Reports an error relating to two arrays not being the same size -when they should be the same size.

    report_iteration_count_errorfstats_errorsSubroutine

    Reports an iteration count error.

    report_matrix_size_errorfstats_errorsSubroutine

    Reports a matrix size error.

    report_memory_errorfstats_errorsSubroutine

    Reports a memory allocation related error.

    report_underdefined_errorfstats_errorsSubroutine

    Reports an underdefined problem error.

    sample_normal_multivariatefstats_samplingFunction

    Samples a multivariate normal distribution such that , where is the lower form of the Cholesky factorization of the covariance matrix, and is a randomly generated vector that exists on the set -

    sample_sizefstats_hypothesisFunction

    Estimates the sample size required to achieve an experiment with the +

    sample_sizefstats_hypothesisFunction

    Estimates the sample size required to achieve an experiment with the desired power and significance levels to ascertain the desired -difference in parameter.

    Read more…
    scaled_random_resamplefstats_bootstrapSubroutine

    A random resampling, scaled by the standard deviation of the original -data, but based upon a normal distribution.

    standard_deviationfstats_descriptive_statisticsFunction

    Computes the sample standard deviation of the values in an array.

    Read more…
    t_test_equal_variancefstats_hypothesisSubroutine

    Computes the 2-tailed Student's T-Test for two data sets of -assumed equivalent variances.

    Read more…
    t_test_pairedfstats_hypothesisSubroutine

    Computes the 2-tailed Student's T-Test for two paired data sets.

    Read more…
    t_test_unequal_variancefstats_hypothesisSubroutine

    Computes the 2-tailed Student's T-Test for two data sets of -assumed non-equivalent variances.

    Read more…
    trimmed_meanfstats_descriptive_statisticsFunction

    Computes the trimmed mean of a data set.

    variancefstats_descriptive_statisticsFunction

    Computes the sample variance of the values in an array.

    Read more…
    scaled_random_resamplefstats_bootstrapSubroutine

    A random resampling, scaled by the standard deviation of the original +data, but based upon a normal distribution.

    standard_deviationfstats_descriptive_statisticsFunction

    Computes the sample standard deviation of the values in an array.

    Read more…
    t_test_equal_variancefstats_hypothesisSubroutine

    Computes the 2-tailed Student's T-Test for two data sets of +assumed equivalent variances.

    Read more…
    t_test_pairedfstats_hypothesisSubroutine

    Computes the 2-tailed Student's T-Test for two paired data sets.

    Read more…
    t_test_unequal_variancefstats_hypothesisSubroutine

    Computes the 2-tailed Student's T-Test for two data sets of +assumed non-equivalent variances.

    Read more…
    trimmed_meanfstats_descriptive_statisticsFunction

    Computes the trimmed mean of a data set.

    variancefstats_descriptive_statisticsFunction

    Computes the sample variance of the values in an array.

    Read more…
    @@ -459,27 +186,32 @@

    Procedures

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +
    +
    +
    @@ -69,130 +91,43 @@

    Derived Types

    TypeLocationExtendsDescription - - anova_factor - fstats_anova - None -

    Defines an ANOVA factor result.

    - - - array_container - fstats_types - None -

    Provides a container for a real-valued array. A practical use of -this construct is in the construction of jagged arrays.

    - - - binomial_distribution - fstats_distributions - distribution -

    Defines a binomial distribution. The binomial distribution describes -the probability p of getting k successes in n independent trials.

    - - - bootstrap_statistics - fstats_bootstrap - None -

    A collection of statistics resulting from the bootstrap process.

    - - - chi_squared_distribution - fstats_distributions - distribution -

    Defines a Chi-squared distribution.

    - - - convergence_info - fstats_regression - None -

    Provides information regarding convergence status.

    - - - distribution - fstats_distributions - None -

    Defines a probability distribution.

    - - - doe_model - fstats_experimental_design - None -

    A model used to represent a design of experiments result. The model -is of the following form.

    Read more… - - - f_distribution - fstats_distributions - distribution -

    Defines an F-distribution.

    - - - iteration_controls - fstats_regression - None -

    Provides a collection of iteration control parameters.

    - - - lm_solver_options - fstats_regression - None -

    Options to control the Levenberg-Marquardt solver.

    - - - metropolis_hastings - fstats_mcmc - None -

    An implementation of the Metropolis-Hastings algorithm for the + anova_factorfstats_anovaNone

    Defines an ANOVA factor result.

    + array_containerfstats_typesNone

    Provides a container for a real-valued array. A practical use of +this construct is in the construction of jagged arrays.

    + binomial_distributionfstats_distributionsdistribution

    Defines a binomial distribution. The binomial distribution describes +the probability p of getting k successes in n independent trials.

    + bootstrap_statisticsfstats_bootstrapNone

    A collection of statistics resulting from the bootstrap process.

    + chi_squared_distributionfstats_distributionsdistribution

    Defines a Chi-squared distribution.

    + convergence_infofstats_regressionNone

    Provides information regarding convergence status.

    + distributionfstats_distributionsNone

    Defines a probability distribution.

    + doe_modelfstats_experimental_designNone

    A model used to represent a design of experiments result. The model +is of the following form.

    Read more… + f_distributionfstats_distributionsdistribution

    Defines an F-distribution.

    + iteration_controlsfstats_regressionNone

    Provides a collection of iteration control parameters.

    + lm_solver_optionsfstats_regressionNone

    Options to control the Levenberg-Marquardt solver.

    + log_normal_distributionfstats_distributionsdistribution

    Defines a normal distribution.

    + mcmc_regressionfstats_mcmc_fittingmetropolis_hastings

    The mcmc_regression type extends the metropolis_hastings type to +specifically target regression problems. The problem is formulated +such that the target distribution takes the form , where is a normal +distribution with as the mean and the model variance, + is determined by computing the variance for the current +estimate of the model.

    + metropolis_hastingsfstats_mcmcNone

    An implementation of the Metropolis-Hastings algorithm for the generation of a Markov chain. This is a default implementation that allows sampling of normally distributed posterior distributions centered on zero with unit standard deviations. Proposals are generated from a multivariate normal distribution with an identity covariance matrix and centered on zero. To alter these sampling and target distributions simply create a new class inheriting from -this class and override the appropriate routines.

    - - - multivariate_distribution - fstats_distributions - None -

    Defines a multivariate probability distribution.

    - - - multivariate_normal_distribution - fstats_distributions - multivariate_distribution -

    Defines a multivariate normal (Gaussian) distribution.

    - - - normal_distribution - fstats_distributions - distribution -

    Defines a normal distribution.

    - - - regression_statistics - fstats_regression - None -

    A container for regression-related statistical information.

    - - - single_factor_anova_table - fstats_anova - None -

    Defines a single-factor ANOVA results table.

    - - - t_distribution - fstats_distributions - distribution -

    Defines Student's T-Distribution.

    - - - two_factor_anova_table - fstats_anova - None -

    Defines a two-factor ANOVA results table.

    - +this class and override the appropriate routines.

    + multivariate_distributionfstats_distributionsNone

    Defines a multivariate probability distribution.

    + multivariate_normal_distributionfstats_distributionsmultivariate_distribution

    Defines a multivariate normal (Gaussian) distribution.

    + normal_distributionfstats_distributionsdistribution

    Defines a normal distribution.

    + regression_statisticsfstats_regressionNone

    A container for regression-related statistical information.

    + single_factor_anova_tablefstats_anovaNone

    Defines a single-factor ANOVA results table.

    + t_distributionfstats_distributionsdistribution

    Defines Student's T-Distribution.

    + two_factor_anova_tablefstats_anovaNone

    Defines a two-factor ANOVA results table.

    @@ -201,27 +136,32 @@

    Derived Types

    -
    -

    FSTATS was developed by Jason Christopherson
    © 2025 +

    +

    FSTATS was developed by Jason Christopherson
    © 2025

    -
    -

    +

    +

    Documentation generated by FORD - on 2025-02-18 07:50

    + on 2025-02-25 14:41


    - - - + + + + + + - - + + + + + + -
    - -
    + + +
    +
    +
    @@ -66,43 +88,39 @@

    fstats Module

    -
    -
    -
    +
    +
    + -
    - +
    -
    +