forked from llSourcell/One-Shot-Learning-Demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_classification.py
executable file
·125 lines (110 loc) · 4.5 KB
/
demo_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/python
import os
import numpy as np
from scipy.ndimage import imread
from scipy.spatial.distance import cdist
# Parameters
nrun = 20 # Number of classification runs
path_to_script_dir = os.path.dirname(os.path.realpath(__file__))
path_to_all_runs = os.path.join(path_to_script_dir, 'all_runs')
fname_label = 'class_labels.txt' # Where class labels are stored for each run
def classification_run(folder, f_load, f_cost, ftype='cost'):
# Compute error rate for one run of one-shot classification
#
# Input
# folder : contains images for a run of one-shot classification
# f_load : itemA = f_load('file.png') should read in the image file and
# process it
# f_cost : f_cost(itemA,itemB) should compute similarity between two
# images, using output of f_load
# ftype : 'cost' if small values from f_cost mean more similar,
# or 'score' if large values are more similar
#
# Output
# perror : percent errors (0 to 100% error)
#
assert ftype in {'cost', 'score'}
with open(os.path.join(path_to_all_runs, folder, fname_label)) as f:
pairs = [line.split() for line in f.readlines()]
# Unzip the pairs into two sets of tuples
test_files, train_files = zip(*pairs)
answers_files = list(train_files) # Copy the training file list
test_files = sorted(test_files)
train_files = sorted(train_files)
n_train = len(train_files)
n_test = len(test_files)
# Load the images (and, if needed, extract features)
train_items = [f_load(os.path.join(path_to_all_runs, f))
for f in train_files]
test_items = [f_load(os.path.join(path_to_all_runs, f))
for f in test_files]
# Compute cost matrix
costM = np.zeros((n_test, n_train))
for i, test_i in enumerate(test_items):
for j, train_j in enumerate(train_items):
costM[i, j] = f_cost(test_i, train_j)
if ftype == 'cost':
y_hats = np.argmin(costM, axis=1)
elif ftype == 'score':
y_hats = np.argmax(costM, axis=1)
else:
# This should never be reached due to the assert above
raise ValueError('Unexpected ftype: {}'.format(ftype))
# compute the error rate by counting the number of correct predictions
correct = len([1 for y_hat, answer in zip(y_hats, answers_files)
if train_files[y_hat] == answer])
pcorrect = correct / float(n_test) # Python 2.x ensure float division
perror = 1.0 - pcorrect
return perror * 100
def modified_hausdorf_distance(itemA, itemB):
# Modified Hausdorff Distance
#
# Input
# itemA : [n x 2] coordinates of black pixels
# itemB : [m x 2] coordinates of black pixels
#
# M.-P. Dubuisson, A. K. Jain (1994). A modified hausdorff distance for object matching.
# International Conference on Pattern Recognition, pp. 566-568.
#
D = cdist(itemA, itemB)
mindist_A = D.min(axis=1)
mindist_B = D.min(axis=0)
mean_A = np.mean(mindist_A)
mean_B = np.mean(mindist_B)
return max(mean_A, mean_B)
def load_img_as_points(filename):
# Load image file and return coordinates of black pixels in the binary image
#
# Input
# filename : string, absolute path to image
#
# Output:
# D : [n x 2] rows are coordinates
#
I = imread(filename, flatten=True)
# Convert to boolean array and invert the pixel values
I = ~np.array(I, dtype=np.bool)
# Create a new array of all the non-zero element coordinates
D = np.array(I.nonzero()).T
return D - D.mean(axis=0)
# Main function
if __name__ == "__main__":
#
# Running this demo should lead to a result of 38.8% average error rate.
#
# M.-P. Dubuisson, A. K. Jain (1994). A modified hausdorff distance for object matching.
# International Conference on Pattern Recognition, pp. 566-568.
#
# ** Models should be trained on images in 'images_background' directory to
# avoid using images and alphabets used in the one-shot evaluation **
#
print('One-shot classification demo with Modified Hausdorff Distance')
perror = np.zeros(nrun)
for r in range(nrun):
perror[r] = classification_run('run{:02d}'.format(r + 1),
load_img_as_points,
modified_hausdorf_distance,
'cost')
print(' run {:02d} (error {:.1f}%)'.format(r, perror[r]))
total = np.mean(perror)
print('Average error {:.1f}%'.format(total))