Skip to content

Latest commit

 

History

History
48 lines (28 loc) · 1.39 KB

File metadata and controls

48 lines (28 loc) · 1.39 KB

Linear Transformer for Table Recognition

Introduction

This is the code repository for participation in ICDAR2021 Competition on scientific literature parsing - Task B: Table recognition (Team Name: LTIAYN = Kaen Context).

0. Before Training

  1. change the prefined data directory '/data/private/datasets/pubtabnet' to your own data directory in 'processing_pubtabnet.py', 'configs/linear_transformer.yaml'
  2. python processing_pubtabnet.py

1. Training

python train.py model_dir=base

2. After Training

  1. inference
python inference.py -m "./outputs/base/" -i "/data/private/datasets/pubtabnet/val/" -o "./results/val1" -nt 16 -ni 0 -na 20
python inference.py -m "./outputs/base/" -i "/data/private/datasets/pubtabnet/val/" -o "./results/val1" -nt 16 -ni 1 -na 20
...
python inference.py -m "./outputs/base/" -i "/data/private/datasets/pubtabnet/val/" -o "./results/val1" -nt 16 -ni 15 -na 20
  1. evalution
python score.py