-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
196 lines (146 loc) · 7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import wget
import torch
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from transformers import BertModel
from kobert_tokenizer import KoBERTTokenizer
from torch.utils.data import random_split, Dataset, DataLoader
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
from preprocessing import generate_preprocessed
class NSMCClassification(pl.LightningModule):
def __init__(self):
super(NSMCClassification, self).__init__()
# load pretrained koBERT
self.bert = BertModel.from_pretrained('pretrained', output_attentions=True)
# simple linear layer (긍/부정, 2 classes)
self.W = nn.Linear(self.bert.config.hidden_size, 2)
self.num_classes = 2
def forward(self, input_ids, attention_mask, token_type_ids):
out = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
)
h_cls = out['last_hidden_state'][:, 0]
logits = self.W(h_cls)
attn = out['attentions']
return logits, attn
def training_step(self, batch, batch_nb):
# batch
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
token_type_ids = batch['token_type_ids']
label = batch['label']
# forward
y_hat, attn = self.forward(input_ids, attention_mask, token_type_ids)
# BCE loss
loss = F.cross_entropy(y_hat, label.long())
# logs
tensorboard_logs = {'train_loss': loss}
return {'loss': loss, 'log': tensorboard_logs}
def validation_step(self, batch, batch_nb):
# batch
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
token_type_ids = batch['token_type_ids']
label = batch['label']
# forward
y_hat, attn = self.forward(input_ids, attention_mask, token_type_ids)
# loss
loss = F.cross_entropy(y_hat, label.long())
# accuracy
a, y_hat = torch.max(y_hat, dim=1)
val_acc = accuracy_score(y_hat.cpu(), label.cpu())
val_acc = torch.tensor(val_acc)
self.log('val_acc', val_acc, prog_bar=True)
return {'val_loss': loss, 'val_acc': val_acc}
def validation_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
avg_val_acc = torch.stack([x['val_acc'] for x in outputs]).mean()
tensorboard_logs = {'val_loss': avg_loss,'avg_val_acc':avg_val_acc}
return {'avg_val_loss': avg_loss, 'progress_bar': tensorboard_logs}
def test_step(self, batch, batch_nb):
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
token_type_ids = batch['token_type_ids']
label = batch['label']
y_hat, attn = self.forward(input_ids, attention_mask, token_type_ids)
a, y_hat = torch.max(y_hat, dim=1)
test_acc = accuracy_score(y_hat.cpu(), label.cpu())
test_acc = torch.tensor(test_acc)
self.log_dict({'test_acc': test_acc})
return {'test_acc': test_acc}
def test_end(self, outputs):
avg_test_acc = torch.stack([x['test_acc'] for x in outputs]).mean()
tensorboard_logs = {'avg_test_acc': avg_test_acc}
return {'avg_test_acc': tensorboard_logs}
def configure_optimizers(self):
parameters = []
for p in self.parameters():
if p.requires_grad:
parameters.append(p)
optimizer = torch.optim.Adam(parameters, lr=2e-05, eps=1e-08)
return optimizer
class NSMCDataset(Dataset):
def __init__(self, file_path, max_seq_len):
self.data = pd.read_csv(file_path)
self.max_seq_len = max_seq_len
self.tokenizer = KoBERTTokenizer.from_pretrained('pretrained')
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data = self.data.iloc[index]
doc = data['document']
features = self.tokenizer.encode_plus(str(doc),
add_special_tokens=True,
max_length=self.max_seq_len,
pad_to_max_length='longest',
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
input_ids = features['input_ids'].squeeze(0)
attention_mask = features['attention_mask'].squeeze(0)
token_type_ids = features['token_type_ids'].squeeze(0)
label = torch.tensor(data['label'])
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
'label': label
}
class NSMCDataModule(pl.LightningDataModule):
def __init__(self, data_path, mode, valid_size, max_seq_len, batch_size):
self.data_path = data_path
self.full_data_path = f'{self.data_path}/train_{mode}.csv'
self.test_data_path = f'{self.data_path}/test_{mode}.csv'
self.valid_size = valid_size
self.max_seq_len = max_seq_len
self.batch_size = batch_size
def prepare_data(self):
# download data
if not os.path.isfile(f'{self.data_path}/ratings_train.txt'):
wget.download('https://github.com/e9t/nsmc/raw/master/ratings_train.txt', out=self.data_path)
if not os.path.isfile(f'{self.data_path}/ratings_test.txt'):
wget.download('https://github.com/e9t/nsmc/raw/master/ratings_test.txt', out=self.data_path)
generate_preprocessed(self.data_path)
def setup(self, stage):
if stage in (None, 'fit'):
full = NSMCDataset(self.full_data_path, self.max_seq_len)
train_size = int(len(full) * (1 - self.valid_size))
valid_size = len(full) - train_size
self.train, self.valid = random_split(full, [train_size, valid_size])
elif stage in (None, 'test'):
self.test = NSMCDataset(self.test_data_path, self.max_seq_len)
def train_dataloader(self):
return DataLoader(self.train, batch_size=self.batch_size, num_workers=5, shuffle=True, pin_memory=True)
def val_dataloader(self):
return DataLoader(self.valid, batch_size=self.batch_size, num_workers=5, shuffle=False, pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test, batch_size=self.batch_size, num_workers=5, shuffle=False, pin_memory=True)
## TODO predict_dataloader 추가