diff --git a/24_Day_Statistics/24_statistics.md b/24_Day_Statistics/24_statistics.md
index cd9f4d32..4978e3c2 100644
--- a/24_Day_Statistics/24_statistics.md
+++ b/24_Day_Statistics/24_statistics.md
@@ -1182,7 +1182,7 @@ np_arr + 2
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
-We use linear equation for quatities which have linear relationship. Let's see the example below:
+We use linear equation for quantities which have linear relationship. Let's see the example below:
```python
temp = np.array([1,2,3,4,5])
diff --git a/25_Day_Pandas/25_pandas.md b/25_Day_Pandas/25_pandas.md
index d3acd118..4f1c8216 100644
--- a/25_Day_Pandas/25_pandas.md
+++ b/25_Day_Pandas/25_pandas.md
@@ -9,9 +9,9 @@
Author:
Asabeneh Yetayeh
- First Edition: Nov 22 - Dec 22, 2019
+ Second Edition: July, 2021
-
+
[<< Day 24](../24_Day_Statistics/24_statistics.md) | [Day 26 >>](../26_Day_Python_web/26_python_web.md)
@@ -20,12 +20,13 @@
- [📘 Day 25](#-day-25)
- [Pandas](#pandas)
- - [Importing Pandas](#importing-pandas)
+ - [Installing Pandas](#installing-pandas)
+ - [Importing Pandas](#importing-pandas)
- [Creating Pandas Series with Default Index](#creating-pandas-series-with-default-index)
- - [Creating Pandas Series with custom index](#creating-pandas-series-with-custom-index)
+ - [Creating Pandas Series with custom index](#creating--pandas-series-with-custom-index)
- [Creating Pandas Series from a Dictionary](#creating-pandas-series-from-a-dictionary)
- [Creating a Constant Pandas Series](#creating-a-constant-pandas-series)
- - [Creating a Pandas Series Using Linspace](#creating-a-pandas-series-using-linspace)
+ - [Creating a Pandas Series Using Linspace](#creating-a--pandas-series-using-linspace)
- [DataFrames](#dataframes)
- [Creating DataFrames from List of Lists](#creating-dataframes-from-list-of-lists)
- [Creating DataFrame Using Dictionary](#creating-dataframe-using-dictionary)
@@ -40,12 +41,24 @@
- [Checking data types of Column values](#checking-data-types-of-column-values)
- [Boolean Indexing](#boolean-indexing)
- [Exercises: Day 25](#exercises-day-25)
+
# 📘 Day 25
+
## Pandas
Pandas is an open source, high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
-Pandas adds data structures and tools designed to work with table-like data which is Series and Data Frames.
-Pandas provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation and imputation.
+Pandas adds data structures and tools designed to work with table-like data which is *Series* and *Data Frames*.
+Pandas provides tools for data manipulation:
+
+- reshaping
+- merging
+- sorting
+- slicing
+- aggregation
+- imputation.
+If you are using anaconda, you do not have install pandas.
+
+### Installing Pandas
For Mac:
```py
@@ -59,9 +72,10 @@ pip install conda
pip install pandas
```
-Pandas data structure is based on *Series* and *DataFrames*
-A series is a column and a DataFrame is a multidimensional table made up of collection of series. In order to create a pandas series we should use numpy to create a one dimensional arrays or a python list.
-Let's see an example of a series:
+Pandas data structure is based on *Series* and *DataFrames*.
+
+A *series* is a *column* and a DataFrame is a *multidimensional table* made up of collection of *series*. In order to create a pandas series we should use numpy to create a one dimensional arrays or a python list.
+Let us see an example of a series:
Names Pandas Series
@@ -77,19 +91,17 @@ Cities Series
As you can see, pandas series is just one column of data. If we want to have multiple columns we use data frames. The example below shows pandas DataFrames.
-Let's see, an example of a pandas data frame:
+Let us see, an example of a pandas data frame:

Data frame is a collection of rows and columns. Look at the table below; it has many more columns than the example above:
-

Next, we will see how to import pandas and how to create Series and DataFrames using pandas
-## Importing Pandas
-
+### Importing Pandas
```python
import pandas as pd # importing pandas as pd
@@ -98,14 +110,12 @@ import numpy as np # importing numpy as np
### Creating Pandas Series with Default Index
-
```python
nums = [1, 2, 3, 4,5]
s = pd.Series(nums)
print(s)
```
-
```sh
0 1
1 2
@@ -115,19 +125,14 @@ print(s)
dtype: int64
```
-
### Creating Pandas Series with custom index
-
```python
nums = [1, 2, 3, 4, 5]
s = pd.Series(nums, index=[1, 2, 3, 4, 5])
print(s)
-
```
-
-
```sh
1 1
2 2
@@ -137,39 +142,30 @@ print(s)
dtype: int64
```
-
-
```python
-fruits = ['Orange','Banana','Mangao']
+fruits = ['Orange','Banana','Mango']
fruits = pd.Series(fruits, index=[1, 2, 3])
print(fruits)
```
-
-
```sh
1 Orange
2 Banana
- 3 Mangao
+ 3 Mango
dtype: object
```
-
### Creating Pandas Series from a Dictionary
-
```python
dct = {'name':'Asabeneh','country':'Finland','city':'Helsinki'}
```
-
```python
s = pd.Series(dct)
print(s)
```
-
-
```sh
name Asabeneh
country Finland
@@ -177,17 +173,13 @@ print(s)
dtype: object
```
-
### Creating a Constant Pandas Series
-
```python
-s = pd.Series(10, index = [1, 2,3])
+s = pd.Series(10, index = [1, 2, 3])
print(s)
```
-
-
```sh
1 10
2 10
@@ -195,17 +187,13 @@ print(s)
dtype: int64
```
-
### Creating a Pandas Series Using Linspace
-
```python
s = pd.Series(np.linspace(5, 20, 10)) # linspace(starting, end, items)
print(s)
```
-
-
```sh
0 5.000000
1 6.666667
@@ -226,7 +214,6 @@ Pandas data frames can be created in different ways.
### Creating DataFrames from List of Lists
-
```python
data = [
['Asabeneh', 'Finland', 'Helsink'],
@@ -270,7 +257,6 @@ print(df)
### Creating DataFrame Using Dictionary
-
```python
data = {'Name': ['Asabeneh', 'David', 'John'], 'Country':[
'Finland', 'UK', 'Sweden'], 'City': ['Helsiki', 'London', 'Stockholm']}
@@ -278,7 +264,6 @@ df = pd.DataFrame(data)
print(df)
```
-