-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_results.py
115 lines (96 loc) · 4.01 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
import seaborn as sns
# Avoid Type 3 fonts
plt.rcParams['pdf.fonttype'] = 42
plt.rcParams['ps.fonttype'] = 42
def compute_mean_err_bar(data, confidence=None):
# Sample data
data = np.array(data)
# Sample mean and standard error
mean = np.mean(data)
std_error = stats.sem(data) # standard error of the mean
if confidence: # 95% confidence interval
# Compute the 95% confidence interval; use t-distribution since sample size < 30
n = len(data)
t_critical = stats.t.ppf((1 + confidence) / 2, df=n-1) # t-critical value for 95% CI
margin_of_error = t_critical * std_error
# confidence_interval = (mean - margin_of_error, mean + margin_of_error)
err_bar = margin_of_error
else:
err_bar = std_error
return mean, err_bar
def plot_full_sys_acc():
# Full system accuracy plot
methods = ['Text+Image (Ours)', 'Text Only (Lang2LTL-Spatial)', 'Image Only']
accuracies_per_sys = [
[
0.9531680441, 0.9348025712, 0.9467401286, 0.943067034, 0.9880624426,
0.8576675849, 0.8503213958, 0.8383838384, 0.8714416896, 0.8622589532,
0.8842975207, 0.8778696051, 0.8907254362, 0.8760330579, 0.8466483012,
0.7520661157, 0.7594123049, 0.7731864096, 0.8797061524, 0.867768595
],
[
0.3140495868, 0.3158861341, 0.3149678604, 0.3149678604, 0.3140495868,
0.2736455464, 0.2837465565, 0.2837465565, 0.2883379247, 0.2883379247,
0.2837465565, 0.277318641, 0.277318641, 0.2819100092, 0.2883379247,
0.2736455464, 0.2883379247, 0.2883379247, 0.2764003673, 0.2653810836
],
[
0.4756657484, 0.4710743802, 0.4775022957, 0.4729109275, 0.4710743802,
0.3232323232, 0.3112947658, 0.290174472, 0.3269054178, 0.3269054178,
0.6703397612, 0.7033976125, 0.6914600551, 0.665748393, 0.6831955923,
0.5610651974, 0.5665748393, 0.5573921028, 0.5564738292, 0.5656565657
]
]
means, err_bars = [], []
for accuracies in accuracies_per_sys:
# mean, err_bar = compute_mean_err_bar(accuracies)
mean, err_bar = compute_mean_err_bar(accuracies, 0.95)
means.append(mean)
err_bars.append(err_bar)
fig = plt.figure(figsize=(6,5))
plt.bar(x=methods, height=means, color=sns.color_palette('colorblind'))
plt.errorbar(methods, means, yerr=err_bars, color="k", fmt='.', elinewidth=2,capthick=2, ms=10, capsize=4)
plt.title("Full System Accuracy", fontsize=18)
plt.xlabel("Modality", fontsize=16)
plt.ylabel("Accuracy (%)", fontsize=16)
plt.xticks(fontsize=9)
fig.tight_layout()
fig.savefig("full_acc.pdf")
def plot_srer_acc():
# SRER accuracy plot
bins_props = ['1', '2', '3', '4', '5']
acc_props = [0.9969465648854962, 0.9947887323943662, 0.9967980295566502, 0.99321608040201, 0.9920398009950249]
fig = plt.figure(figsize=(6,3))
plt.bar(x=bins_props, height=acc_props, color=sns.color_palette('colorblind')[0])
plt.xlabel("Number of Spatial Referring Expressions (SREs)", fontsize=16)
plt.ylabel("Accuracy (%)", fontsize=16)
plt.xticks(fontsize=11)
fig.tight_layout()
fig.savefig("srer_acc.pdf")
def plot_reg_acc():
# REG accuracy plot
bins_reg = ['0-10', '11-20', '21-30', '31-40']
acc_dict = {3: 1.0, 4: 1.0, 5: 0.9996715388405321, 6: 1.0, 7: 1.0, 8: 0.9831536388140162, 9: 1.0, 10: 1.0, 11: 1.0, 12: 1.0, 13: 1.0, 14: 1.0, 15: 1.0, 16: 1.0, 17: 1.0, 18: 1.0, 19: 1.0, 20: 0.9970760233918129, 21: 1.0, 22: 1.0, 23: 1.0, 24: 1.0, 25: 0.9983974358974359, 26: 1.0, 28: 1.0, 29: 1.0, 30: 1.0, 31: 1.0, 32: 1.0, 33: 1.0, 35: 1.0, 36: 1.0, 37: 0.9807692307692307}
acc_reg = []
for x in bins_reg:
start, end = eval(x.split('-')[0]), eval(x.split('-')[1])
total, count = 0, 0
for y in range(start, end+1):
if y in acc_dict:
total += acc_dict[y]
count += 1
acc_reg.append(total/count)
fig = plt.figure(figsize=(6,3))
plt.bar(x=bins_reg, height=acc_reg, color=sns.color_palette('colorblind')[0])
plt.xlabel("Length of Referring Expressions (REs)", fontsize=16)
plt.ylabel("Accuracy (%)", fontsize=16)
plt.xticks(fontsize=11)
fig.tight_layout()
fig.savefig("reg_acc.pdf")
if __name__ == "__main__":
plot_full_sys_acc()
plot_srer_acc()
plot_reg_acc()