-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_full.py
174 lines (149 loc) · 8.46 KB
/
dataset_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import argparse
import logging
from collections import defaultdict
import itertools
import random
import re
from utils import load_from_file, save_to_file
def split_true_lmk_grounds(lmks_fpath, loc, sp_fpath, res_fpath):
"""
Split ``true_lmk_grounds.json`` into two files contains referring expressions per landmark
and grounded spatial predications per spatial relation for each location.
"""
lmk_grounds = load_from_file(lmks_fpath)[loc]
sp_grounds = defaultdict(list)
res = defaultdict(lambda: defaultdict(list))
for lmk, grounds in lmk_grounds.items():
for ground in grounds:
if "*" in ground: # unique referring expression can identify landmark without anchor
res[lmk]["proper_names"].append(ground["*"])
if lmk not in sp_grounds["None"]:
sp_grounds["None"].append(lmk)
elif "@" in ground: # ambiguous referring expression if used without anchor
res[lmk]["generic_names"].append(ground["@"])
else: # referring expression grounding
rel = list(ground.keys())[0]
sp_grounds[rel].append(ground[rel])
save_to_file(sp_grounds, sp_fpath)
save_to_file(res, res_fpath)
def construct_dataset(ltl_fpath, sp_fpath, res_fpath, utts_fpath, outs_fpath, nsamples, seed):
"""
Generate input utterances and ground truth results for each grounding module.
"""
random.seed(seed)
lifted_data = load_from_file(ltl_fpath)
sp_grounds_all = load_from_file(sp_fpath)
res_all = load_from_file(res_fpath)
ltl2data = defaultdict(set)
utts = []
for pattern_type, props, utt_lifted, ltl_lifted in lifted_data:
if utt_lifted not in utts:
ltl2data[ltl_lifted].add((pattern_type, props, utt_lifted))
ltl2data = sorted(ltl2data.items(), key=lambda kv: len(kv[0]))
logging.info(f"# unique lifted LTL formulas: {len(ltl2data)}")
nutts = 0
for ltl, data in ltl2data:
nutts += len(data)
logging.info(f"{ltl}: {len(data)}")
logging.info(f"# unique utterances: {nutts}")
logging.info(f"# unique spatial relations: {len(sp_grounds_all)}")
logging.info(f"# unique landmarks: {len(res_all)}")
utts = ""
true_outs = []
for ltl_lifted, ltl_data in ltl2data: # every lifted LTL formula
data_sampled = random.sample(sorted(ltl_data), nsamples) if nsamples else sorted(ltl_data)
for data in data_sampled: # every sampled lifted utterances
pattern_type, props_full_str, utt_lifted = data
props_full = eval(props_full_str)
props = [props_full[0]] if len(set(props_full)) == 1 else props_full # e.g., visit a at most twice, ['a', 'a']
rels = random.sample(sorted(sp_grounds_all), len(props))
sre_to_preds = {}
grounded_sre_to_preds = defaultdict(dict)
grounded_sps = defaultdict(list)
for rel in rels: # every sampled spatial relations
sp_grounds_sampled = random.sample(sp_grounds_all[rel], 1)[0]
res_true = []
if rel == "None": # referring expression without spatial relation
sre = random.sample(res_all[sp_grounds_sampled]["proper_names"], 1)[0]
res_true.append(sre)
sp_true = {"target": sp_grounds_sampled}
elif len(sp_grounds_sampled) == 1: # sre with only an anchor
while "proper_names" not in res_all[sp_grounds_sampled[0]]:
sp_grounds_sampled = random.sample(sp_grounds_all[rel], 1)[0]
re_tar = random.sample(res_all[sp_grounds_sampled[0]]["proper_names"], 1)[0]
res_true.append(re_tar)
sre = f"{rel} {re_tar}"
sp_true = {"anchor": [sp_grounds_sampled[0]]}
else: # for sre with target and one or two anchors, both proper and generic names are valid
while "proper_names" not in res_all[sp_grounds_sampled[1][0]] \
or (len(sp_grounds_sampled) == 3 and "proper_names" not in res_all[sp_grounds_sampled[2][0]]):
sp_grounds_sampled = random.sample(sp_grounds_all[rel], 1)[0]
res_tar = list(itertools.chain.from_iterable(res_all[sp_grounds_sampled[0][0]].values()))
re_tar = random.sample(res_tar, 1)[0] # target referring expression
res_true.append(re_tar)
re_anc1 = random.sample(res_all[sp_grounds_sampled[1][0]]["proper_names"], 1)[0] # anchor 1 referring expression
res_true.append(re_anc1)
if len(sp_grounds_sampled) == 2:
sre = f"{re_tar} {rel} {re_anc1}"
sp_true = {"target": sp_grounds_sampled[0][0], "anchor": [sp_grounds_sampled[1][0]]}
else:
re_anc2 = random.sample(res_all[sp_grounds_sampled[2][0]]["proper_names"], 1)[0] # anchor 2 referring expression
res_true.append(re_anc2)
sre = f"{re_tar} {rel} {re_anc1} and {re_anc2}"
sp_true = {"target": sp_grounds_sampled[0][0], "anchor": [sp_grounds_sampled[1][0], sp_grounds_sampled[2][0]]}
sre_to_preds[sre] = {rel: res_true}
if rel == "None":
grounded_sre_to_preds[sre][rel] = [[[1.0, sp_grounds_sampled]]]
else:
grounded_sre_to_preds[sre][rel] = [[score_ground] for score_ground in [[1.0, sp_ground[0]] for sp_ground in sp_grounds_sampled]]
grounded_sps[sre].append(sp_true)
if not utt_lifted.startswith('.'):
utt_ground = '.' + utt_lifted
if not utt_ground.endswith('.'):
utt_ground += '.'
for prop, sre in zip(props, sre_to_preds.keys()):
utt_ground = re.sub(rf"(\b)([{prop}])(\W)", rf'\1{sre}\3', utt_ground)
utt_ground = utt_ground[1:-1]
utts += f"{utt_ground}\n"
true_outs.append({
"pattern_type": pattern_type,
"utt": utt_ground.strip(),
"lifted_utt": utt_lifted,
"props": props_full,
"sre_to_preds": sre_to_preds,
"grounded_sre_to_preds": grounded_sre_to_preds,
"grounded_sps": grounded_sps,
"lifted_ltl": ltl_lifted
})
save_to_file(utts, utts_fpath)
save_to_file(true_outs, outs_fpath)
logging.info(f"# data points: {len(true_outs)}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--loc", type=str, default="providence", choices=["providence", "auckland", "boston", "san_francisco"], help="domain name.")
parser.add_argument("--nsamples", type=int, default=None, help="number of sample utts per LTL formula or None for all.")
parser.add_argument("--seed", type=int, default=0, help="seed to random sampler.") # 0, 1, 2, 42. 111 (reserved for ablate)
args = parser.parse_args()
loc_id = f"{args.loc}_n{args.nsamples}_seed{args.seed}" if args.nsamples else f"{args.loc}_all_seed{args.seed}"
dataset_dpath = os.path.join(os.path.expanduser("~"), "ground", "data", "dataset")
loc_dpath = os.path.join(dataset_dpath, args.loc)
os.makedirs(loc_dpath, exist_ok=True)
ltl_fpath = os.path.join(dataset_dpath, "ltl_samples_sorted.csv")
sp_fpath = os.path.join(loc_dpath, f"{args.loc}_sp_grounds.json")
res_fpath = os.path.join(loc_dpath, f"{args.loc}_res.json")
utts_fpath = os.path.join(loc_dpath, f"{loc_id}_utts.txt")
outs_fpath = os.path.join(loc_dpath, f"{loc_id}_true_results.json")
logging.basicConfig(level=logging.INFO,
format='%(message)s',
handlers=[
logging.FileHandler(os.path.join(loc_dpath, f"{args.loc}_synthetic_dataset.log"), mode='w'),
logging.StreamHandler()
]
)
logging.info(f"Generating dataset location: {args.loc}\n***** Dataset Statisitcs\n")
if not os.path.isfile(sp_fpath) or not os.path.isfile(res_fpath):
lmks_fpath = os.path.join(dataset_dpath, "true_lmk_grounds.json")
split_true_lmk_grounds(lmks_fpath, args.loc, sp_fpath, res_fpath)
if not os.path.isfile(utts_fpath) or not os.path.isfile(outs_fpath):
construct_dataset(ltl_fpath, sp_fpath, res_fpath, utts_fpath, outs_fpath, args.nsamples, args.seed)