-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathies_utils.py
245 lines (183 loc) · 8.45 KB
/
ies_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 3 10:36:41 2022
@author: asus
"""
import torch
import numpy as np
from scipy import sparse
import matplotlib as mpl
# mpl.use('Agg')
import matplotlib.pyplot as plt
#设置汉字格式
# sans-serif就是无衬线字体,是一种通用字体族。
# 常见的无衬线字体有 Trebuchet MS, Tahoma, Verdana, Arial, Helvetica,SimHei 中文的幼圆、隶书等等
plt.rcParams["font.family"] = "serif"
plt.rcParams["font.serif"] = ["Times New Roman"]
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
plt.rcParams.update({"font.size":16})#此处必须添加此句代码方可改变标题字体大小
plt.rcParams['xtick.direction'] = 'in' # in; out; inout
plt.rcParams['ytick.direction'] = 'in'
#%%
def get_l1loss(output,target):
loss=abs(output-target).mean()
return loss
def configure_ies(ies_args,test_input,test_target):
########################################################
obser=test_target
measurement=obser.flatten()#B*Fout
input_channel=test_input.shape[-1]
output_channel=obser.shape[-1]
ensemble=np.random.randn(ies_args['num_ensemble'],input_channel*test_input.shape[0])#E_B*Fin
principal_sqrtR=np.diag(np.ones(output_channel))
return obser,measurement,ensemble,principal_sqrtR,input_channel,output_channel
def get_output_loss(ensemble,measurement,input_channel,model,wbase,ne):
sim_data=[]
for i in range(ensemble.shape[0]):
ensemble_tensor=torch.FloatTensor(ensemble[i:i+1,:]).reshape(-1,input_channel)
sim_data.append(model(ensemble_tensor).detach().numpy().reshape(1,-1))
sim_data=np.vstack(sim_data)
sim_data=sim_data/np.tile(wbase,(sim_data.shape[0],1))
obj=get_l1loss(sim_data[:ne,:],measurement)
print('optimize objection=',obj)
return sim_data,obj
def inner_iteration(ies_args,nd,ne,nf,input_channel,ensemble,measurement,sim_data,perturbed_data,wbase,model,
ud,wd,vd,svdpd,deltaM,deltaD,obj,lambd,iterat):
iter_lambd=1#inner interation是对lambda进行迭代,然后使用iter_lambd控制内部迭代次数
is_min_rn=0
max_inn_iter=ies_args['max_in_iter']
lambd_reduct=ies_args['lambd_reduct']
lambd_incre=ies_args['lambd_incre']
do_tsvd=ies_args['do_tsvd']
min_rn=ies_args['min_rn']
while iter_lambd<max_inn_iter:
print('------inner interation step:',iter_lambd,'------')
ensemble_old=ensemble.copy()
sim_data_old=sim_data.copy()
if do_tsvd:
alpha=lambd*np.sum(wd**2)/svdpd
[email protected](wd/(wd**2+alpha),0,(svdpd,svdpd))
kgain=deltaM.T@[email protected]
else:
alpha=lambd*sum(sum(deltaD**2))/nd
kgain=deltaM@deltaD/([email protected]()+alpha*np.eye(nd))
iterated_ensemble=ensemble[:ne,:]-(sim_data[:ne,:]-perturbed_data)@kgain.T
ensemble_mean=iterated_ensemble.mean(axis=0)
ensemble=np.vstack([iterated_ensemble,ensemble_mean])
m_change=np.sqrt(np.sum((ensemble[:ne,:]-ensemble_old[:ne,:])**2)/nf)
print('average change (in RMSE) of ensemble mean=',m_change)
sim_data,obj_new=get_output_loss(ensemble,measurement,input_channel,model,wbase,ne)
if obj_new>obj:
lambd=lambd*lambd_incre
print('lambd increase to',lambd)
iter_lambd=iter_lambd+1
sim_data=sim_data_old
ensemble=ensemble_old
else:
lambd=lambd*lambd_reduct
print('lambd reduce to',lambd)
iterat=iterat+1
if abs(obj_new-obj)/abs(obj)*100<min_rn:
is_min_rn=1
sim_data_old=sim_data
ensemble_old=ensemble
obj=obj_new
break
return iter_lambd,lambd,iterat,is_min_rn,ensemble,sim_data,obj
def outter_iteration(ies_args,nd,ne,nf,input_channel,init_obj,ensemble,measurement,sim_data,perturbed_data,wbase,model):
iterat=0
obj=init_obj
init_lambd=ies_args['init_lambd']
lambd=ies_args['init_lambd']
beta=ies_args['beta']
obj_thresh=beta**2*nd
max_out_iter=ies_args['max_out_iter']
max_inn_iter=ies_args['max_in_iter']
lambd_incre=ies_args['lambd_incre']
min_rn=ies_args['min_rn']
max_lambd=ies_args['max_lambd']
do_tsvd=ies_args['do_tsvd']
tsvd_cut=ies_args['tsvd_cut']
# flags of iES termination status; 1st => maxOuterIter; 2nd => objThreshold; 3rd => min_RN_change; 4th => max_lambd
exit_flag=[0,0,0,0]
objs=[]
lambds=[]
########################################################
while iterat<max_out_iter and obj>obj_thresh:
print('------outer iteration step:',iterat,'------')
print('number of measurement elements is ',measurement.size)
#这里的deltaD和deltaM和matlab里面是互为转置关系
deltaM=ensemble[:ne,:]-np.ones((ne,1))@ensemble[ne:,:]
deltaD=sim_data[:ne,:]-np.ones((ne,1))@sim_data[ne:,:]
if do_tsvd:
ud,wd,vd=np.linalg.svd(deltaD.T,full_matrices=False)
vd=vd.T
wd=np.diag(wd)
val=np.diag(wd)
total=np.sum(val)
for j in range(1,ne):
svdpd=j
if val[:j].sum()/total>tsvd_cut:
break
print('svdpd=',svdpd)
ud=ud[:,:svdpd]
wd=val[:svdpd]
vd=vd[:,:svdpd]
iter_lambd,lambd,iterat,is_min_rn,ensemble,sim_data,obj=inner_iteration(ies_args,nd,ne,nf,input_channel,ensemble,measurement,sim_data,perturbed_data,wbase,model,
ud,wd,vd,svdpd,deltaM,deltaD,obj,lambd,iterat)
objs.append(obj)
lambds.append(lambd)
if iter_lambd>=max_inn_iter:
lambd=lambd*lambd_incre
if lambd<init_lambd:
lambd=init_lambd
iterat=iterat+1
print('terminating inner iterations: iterLambda >= maxInnerIter')
if is_min_rn:
print('terminating outer iterations: reduction of objective function is less than ',min_rn)
exit_flag[2]=1
break
if lambd>max_lambd:
print('terminating outer iterations: lambd is bigger than ',max_lambd)
exit_flag[3]=1
break
if iterat>=max_out_iter:
print('terminating outer iterations: iter >= maxOuterIter')
exit_flag[0]=1
if obj<=obj_thresh:
print('terminating outer iterations: obj <= objThreshold')
exit_flag[1]=1
print('exit_flag=',exit_flag)
return ensemble,objs,lambds
#%%
def ies_main(ies_args,test_input,test_target,model):
obser,measurement,ensemble,principal_sqrtR,\
input_channel,output_channel=configure_ies(ies_args,test_input,test_target)
########################################################
nd=len(measurement)#B*Fout,观测值的数量
ne=ensemble.shape[0]#E,集成的个数
ensemble_mean=ensemble.mean(axis=0)[np.newaxis,:]
ensemble=np.vstack([ensemble,ensemble_mean])
#B*Fout
wbase=[]
for i in range(obser.shape[0]):
wbase.append(np.diag(principal_sqrtR))
wbase=np.array(wbase).flatten()
measurement=measurement/wbase
perturbed_data=np.zeros((ne,nd))
weight=ies_args['noise']*measurement
# weight=np.ones_like(measurement)
for i in range(ne):
# perturbed_data[i,:]=measurement+weight*np.random.randn(*measurement.shape)
perturbed_data[i,:]=measurement+weight*np.random.uniform(-1,1,measurement.shape)
########################################################
nf=ensemble.shape[1]
sim_data,obj=get_output_loss(ensemble, measurement, input_channel, model, wbase, ne)
init_obj=obj
ensemble,objs,lambds=outter_iteration(ies_args,nd,ne,nf,input_channel,init_obj,ensemble,measurement,sim_data,perturbed_data,wbase,model)
ensemble=ensemble.reshape(ne+1,-1,input_channel)
test_output=model(torch.FloatTensor(test_input)).detach().numpy()
ensemble_output=model(torch.FloatTensor(ensemble[-1])).detach().numpy()
objs=np.array(objs)
lambds=np.array(lambds)
return ensemble,test_output,ensemble_output,objs,lambds