forked from rowanz/grover
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
161 lines (132 loc) · 6.54 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Original work Copyright 2018 The Google AI Language Team Authors.
# Modified work Copyright 2019 Rowan Zellers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import tensorflow as tf
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def input_fn_builder(input_files,
seq_length,
is_training,
num_cpu_threads=4,
evaluate_for_fixed_number_of_steps=True):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length + 1], tf.int64),
}
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.data.experimental.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# If we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
if evaluate_for_fixed_number_of_steps:
d = d.repeat()
# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
# and we *don't* want to drop the remainder, otherwise we wont cover
# every sample.
d = d.apply(
tf.data.experimental.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
return d
return input_fn
# ~~~~~~~~~~~~~~ This is for classification / AF ~~~~~~~~~~~~~~~~~~
def classification_convert_examples_to_features(
examples, max_seq_length, batch_size, encoder, output_file, labels, pad_extra_examples=False,
chop_from_front_if_needed=True):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
label_map = {label: i for i, label in enumerate(labels)}
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
# begin_summary is our [CLS] token
tokens = example['ids'] + [encoder.begin_summary]
if len(tokens) > max_seq_length:
if chop_from_front_if_needed:
tokens = tokens[-max_seq_length:]
else:
tokens = example['ids'][:(max_seq_length-1)] + [encoder.begin_summary]
elif len(tokens) < max_seq_length:
tokens.extend([encoder.padding] * (max_seq_length - len(tokens)))
features = collections.OrderedDict()
features['input_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=tokens))
features['label_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[label_map[example['label']]]))
features['is_real_example'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[1]))
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
if pad_extra_examples:
for x in range(len(examples) % batch_size):
features = collections.OrderedDict()
features['input_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[0]*max_seq_length))
features['label_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[0]))
features['is_real_example'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[0]))
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def classification_input_fn_builder(input_file, seq_length, is_training,
drop_remainder,
buffer_size=100):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=buffer_size)
d = d.apply(
tf.data.experimental.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn