-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
281 lines (229 loc) · 7.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
from re import T
import tensorflow as tf
from tensorflow import keras
import keras_cv
from keras_cv import bounding_box
import datetime
from tqdm.auto import tqdm
import xml.etree.ElementTree as ET
# globals
gl_labels = "datasets/voc-xml"
bbxf = "xyxy"
# Load Image
def load_image(image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
return image
# Load Dataset into tf bbx format
def load_dataset(image_path, classes, bbox):
# Read Image
image = load_image(image_path)
bounding_boxes = {"boxes": bbox, "classes": classes}
return {"images": tf.cast(image, tf.float32), "bounding_boxes": bounding_boxes}
# # Convert dict to tuple
# def dict_to_tuple(inputs):
# return inputs["images"], inputs["bounding_boxes"]
def dict_to_tuple(inputs):
return inputs["images"], bounding_box.to_dense(
inputs["bounding_boxes"], max_boxes=32
)
# Parse XML trees of dataset
def parse_annotation(xml_file, class_mapping):
tree = ET.parse(xml_file)
root = tree.getroot()
image_name = root.find("filename").text
image_path = os.path.join(gl_labels, image_name)
boxes = []
classes = []
for obj in root.iter("object"):
cls = obj.find("name").text
cls = cls.lower()
if cls == "check box":
cls = "checkbox"
if cls == "radio button":
cls = "radio"
classes.append(cls)
bbox = obj.find("bndbox")
xmin = float(bbox.find("xmin").text)
ymin = float(bbox.find("ymin").text)
xmax = float(bbox.find("xmax").text)
ymax = float(bbox.find("ymax").text)
boxes.append([xmin, ymin, xmax, ymax])
class_ids = [
list(class_mapping.keys())[list(class_mapping.values()).index(cls)]
for cls in classes
]
return image_path, boxes, class_ids
# Sort data into image paths, bounding boxes and classes
def sort_data(class_mapping):
print("Sorting data")
# Get all XML file paths in path_annot and sort them
xml_files = sorted(
[
os.path.join(gl_labels, file_name)
for file_name in os.listdir(gl_labels)
if file_name.endswith(".xml")
]
)
# Get all JPEG image file paths in path_images and sort them
jpg_files = sorted(
[
os.path.join(gl_labels, file_name)
for file_name in os.listdir(gl_labels)
if file_name.endswith(".jpg")
]
)
print(f"Total XML files: {len(xml_files)}" f"\nTotal JPEG files: {len(jpg_files)}")
image_paths = []
bbox = []
classes = []
for xml_file in tqdm(xml_files):
image_path, boxes, class_ids = parse_annotation(xml_file, class_mapping)
image_paths.append(image_path)
bbox.append(boxes)
classes.append(class_ids)
return image_paths, bbox, classes
# Generate train/val data from image paths, bounding boxes and classes
def tf_data_gen(image_paths, bbox, classes, split):
print("Generating data")
files = tf.ragged.constant(image_paths)
labels = tf.ragged.constant(classes)
bboxes = tf.ragged.constant(bbox)
dataset = tf.data.Dataset.from_tensor_slices((files, labels, bboxes))
# Split the dataset into train and validation sets
train_size = int(split * len(dataset))
train_data = dataset.take(train_size)
val_data = dataset.skip(train_size)
print(len(dataset))
print("Train Size: ", len(train_data))
print("Validation Size: ", len(val_data))
return train_data, val_data
# Data augmentation
def augment_data(train_ds, val_ds):
print("Augmenting data")
augmenters = keras.Sequential(
layers=[
keras_cv.layers.RandomFlip(mode="horizontal", bounding_box_format=bbxf),
keras_cv.layers.JitteredResize(
target_size=(640, 640),
scale_factor=(0.75, 1.3),
bounding_box_format=bbxf,
),
]
)
train_ds = train_ds.map(augmenters, num_parallel_calls=tf.data.AUTOTUNE)
resizing = keras_cv.layers.Resizing(
width=640,
height=640,
bounding_box_format=bbxf,
pad_to_aspect_ratio=True,
)
val_ds = val_ds.map(resizing, num_parallel_calls=tf.data.AUTOTUNE)
train_ds = train_ds.map(dict_to_tuple, num_parallel_calls=tf.data.AUTOTUNE)
train_ds = train_ds.prefetch(tf.data.AUTOTUNE)
val_ds = val_ds.map(dict_to_tuple, num_parallel_calls=tf.data.AUTOTUNE)
val_ds = val_ds.prefetch(tf.data.AUTOTUNE)
return train_ds, val_ds
# Train model
def train(
class_mapping,
backbone="yolo_v8_xs_backbone_coco",
lr=0.001,
num_epochs=10,
split=0.7,
patience=10,
batch_size=4,
weights=None,
):
print("Training model")
print("Class Mapping: ", class_mapping)
print("Backbone: ", backbone)
print("Learning Rate: ", lr)
print("Number of Epochs: ", num_epochs)
print("Split: ", split)
print("Patience: ", patience)
print("Batch Size: ", batch_size)
image_paths, bbox, classes = sort_data(class_mapping=class_mapping)
train_data, val_data = tf_data_gen(image_paths, bbox, classes, split=split)
print(train_data)
train_ds = train_data.map(load_dataset, num_parallel_calls=tf.data.AUTOTUNE)
train_ds = train_ds.shuffle(batch_size * 4)
train_ds = train_ds.ragged_batch(batch_size, drop_remainder=True)
val_ds = val_data.map(load_dataset, num_parallel_calls=tf.data.AUTOTUNE)
val_ds = val_ds.ragged_batch(batch_size, drop_remainder=True)
train_ds, val_ds = augment_data(train_ds, val_ds)
print("Backbone: ", backbone)
backbone = keras_cv.models.YOLOV8Backbone.from_preset(backbone)
num_classes = len(class_mapping)
print("Number of Classes: ", num_classes)
model = keras_cv.models.YOLOV8Detector(
num_classes=len(class_mapping),
bounding_box_format=bbxf,
backbone=backbone,
fpn_depth=2,
)
# including a global_clipnorm is extremely important in object detection tasks
optimizer = keras.optimizers.SGD(
learning_rate=lr, momentum=0.9, global_clipnorm=10.0
)
model.compile(
optimizer=optimizer,
classification_loss="binary_crossentropy",
box_loss="ciou",
)
dt = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
callback = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=patience, restore_best_weights=True
)
# with training time
csvlogger = keras.callbacks.CSVLogger(
"histories/sketch2code_training_" + dt + ".log",
append=True,
)
modelcheckpoint = keras.callbacks.ModelCheckpoint(
"histories/sketch2code_history_" + dt + ".weights.h5",
monitor="val_loss",
save_best_only=True,
save_weights_only=True,
mode="auto",
)
reducelronplateau = keras.callbacks.ReduceLROnPlateau(
monitor="val_loss", factor=0.1, patience=5, verbose=1, min_lr=1e-7
)
pycoco = keras_cv.callbacks.PyCOCOCallback(
val_ds, bounding_box_format=bbxf, cache=True
)
tensorboard = keras.callbacks.TensorBoard(
log_dir="logs/sketch2code_" + dt, histogram_freq=1
)
callbacks = [
pycoco,
callback,
csvlogger,
modelcheckpoint,
reducelronplateau,
tensorboard,
]
if weights is not None:
print("Loading weights: " + weights)
model.load_weights(weights)
model.fit(
# Run for 10-35~ epochs to achieve good scores.
train_ds,
epochs=num_epochs,
callbacks=[callbacks],
validation_data=val_ds,
)
results = model.evaluate(val_ds)
print("Results: ", results)
return model, dt
def save_model(
path,
model: tf.keras.models.Model,
time=datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S"),
):
if path is not None:
model.save(path)
else:
model.save("models/sketch2code_model_" + time + ".keras")