-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
255 lines (223 loc) · 9.33 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import torch
import torch.utils.data as data
import numpy as np
import pyvista as pv
import random
import pytorch3d
from pytorch3d import ops
def get_dataset(args, set_type, datasets, train=True):
if set_type == 'train' and train==True:
train = True
else:
train = False
dataset_dict = get_dataset_dict(args, set_type, datasets)
# 4D / spatiotemporal
if '4d' in args and args['4d'] == True:
dataset = PC_Sequence_Dataset(args, dataset_dict, train)
# 3D
else:
if 'dpc' in args.model_name:
dataset = Paired_PC_Dataset(args, dataset_dict, train)
else:
dataset = PC_Dataset(args, dataset_dict, train)
return dataset
def get_dataset_dict(args, set_type, datasets):
data_dirs = []
for dataset in datasets:
data_dirs.append(os.path.join('data/', dataset, set_type)+'/')
subsample = args.train_subset_size
if args.train_subset_size != None and args.train_subset_size > 1 and set_type=='train':
subsample = args.train_subset_size
else:
subsample = None
point_sets = []
names = []
labels = []
i=0
for data_dir in data_dirs:
for file in sorted(os.listdir(data_dir))[:subsample]:
if '.vtk' in file:
points = np.array(pv.read(data_dir+file).points)
elif '.particles' in file:
points = np.loadtxt(data_dir+file)
else:
print("Error: unreconginzed file")
break
point_sets.append(points)
names.append(file.replace(".vtk","").replace(".particles",""))
labels.append(i)
i += 1
dataset_dict = {}
dataset_dict['point_sets'] = point_sets
dataset_dict['names'] = names
dataset_dict['labels'] = labels
return dataset_dict
# Point cloud dataset
class PC_Dataset(data.Dataset):
def __init__(self, args, dataset_dict, train=False):
self.num_points = args.num_input_points
self.missing_percent = args.missing_percent
self.noise_level = args.noise_level
if self.noise_level== None or self.noise_level==0:
self.add_noise = False
else:
self.add_noise = True
self.rot_range = args.rot_range
if self.rot_range == None or self.rot_range==0 or not train:
self.add_rot= False
else:
self.add_rot = True
self.point_sets = dataset_dict['point_sets']
self.names = dataset_dict['names']
self.labels = dataset_dict['labels']
self.train = train
self.num_gt = 10000 #5000
def __getitem__(self, index):
full_point_set = self.point_sets[index]
if self.add_rot:
R = get_random_rot(self.rot_range)
full_point_set = full_point_set @ R.T
name = self.names[index]
label = self.labels[index]
# add missingness
if not self.missing_percent or self.missing_percent == 0:
partial_point_set = full_point_set
else:
if self.missing_percent == -1:
missing_percent = np.random.uniform(0, 0.5)
else:
missing_percent = self.missing_percent
if self.train:
seed = np.random.randint(len(full_point_set))
else:
seed = 0 # consistent testing
distances = np.linalg.norm(full_point_set - full_point_set[seed], axis=1)
sorted_points = full_point_set[np.argsort(distances)]
partial_point_set = sorted_points[int(len(full_point_set)*missing_percent):]
# select subset
if self.num_points > len(partial_point_set):
replace = True
else:
replace = False
choice = np.random.choice(len(partial_point_set), self.num_points, replace=replace)
partial = torch.FloatTensor(partial_point_set[choice, :])
# add noise
if self.add_noise:
partial = partial + (self.noise_level)*torch.randn(partial.shape)
# ground truth
choice = np.random.choice(len(full_point_set), self.num_gt, replace=True)
gt = torch.FloatTensor(full_point_set[choice, :])
return partial, gt, label, name
def __len__(self):
return len(self.point_sets)
# Point cloud dataset
class PC_Sequence_Dataset(data.Dataset):
def __init__(self, args, dataset_dict, train=False):
self.num_points = args.num_input_points
self.num_time_points = args.num_time_points
self.missing_percent = args.missing_percent
self.noise_level = args.noise_level
if self.noise_level== None or self.noise_level==0:
self.add_noise = False
else:
self.add_noise = True
self.rot_range = args.rot_range
if self.rot_range == None or self.rot_range==0 or not train:
self.add_rot= False
else:
self.add_rot = True
point_sets = dataset_dict['point_sets']
names = dataset_dict['names']
labels = dataset_dict['labels']
# Reshape into sequences
self.point_set_seqs = [point_sets[i:i + self.num_time_points] for i in range(0, len(point_sets), self.num_time_points)]
self.names = [names[i:i + self.num_time_points] for i in range(0, len(names), self.num_time_points)]
self.labels = [labels[i:i + self.num_time_points] for i in range(0, len(labels), self.num_time_points)]
def __getitem__(self, index):
point_seq = self.point_set_seqs[index]
name = self.names[index]
label = torch.tensor(self.labels[index])
input_seq = torch.zeros((self.num_time_points, self.num_points, 3))
gt_seq = torch.zeros((self.num_time_points, 5000, 3))
for t in range(self.num_time_points):
full_point_set = point_seq[t]
choice = np.random.choice(len(full_point_set), 5000, replace=True)
gt_seq[t] = torch.FloatTensor(full_point_set[choice, :])
if self.add_rot:
R = get_random_rot(self.rot_range)
full_point_set = full_point_set @ R.T
# add missingness
if not self.missing_percent or self.missing_percent == 0:
partial_point_set = full_point_set
else:
if self.missing_percent == -1:
missing_percent = np.random.uniform(0, 0.5)
else:
missing_percent = self.missing_percent
if self.train:
seed = np.random.randint(len(full_point_set))
else:
seed = 0 # consistent testing
distances = np.linalg.norm(full_point_set - full_point_set[seed], axis=1)
sorted_points = full_point_set[np.argsort(distances)]
partial_point_set = sorted_points[int(len(full_point_set)*missing_percent):]
# select subset
if self.num_points > len(partial_point_set):
replace = True
else:
replace = False
choice = np.random.choice(len(partial_point_set), self.num_points, replace=replace)
partial = torch.FloatTensor(partial_point_set[choice, :])
# add noise
if self.add_noise:
partial = partial + (self.noise_level)*torch.randn(partial.shape)
input_seq[t] = partial
return input_seq, gt_seq, label, name
def __len__(self):
return len(self.point_set_seqs)
def get_random_rot(deg):
deg = np.deg2rad(deg)
theta_x = np.random.uniform(low=-1*deg, high=deg)
theta_y = np.random.uniform(low=-1*deg, high=deg)
theta_z = np.random.uniform(low=-1*deg, high=deg)
R1 = np.eye(3)
R1[1, 1] = np.cos(theta_x)
R1[2, 2] = np.cos(theta_x)
R1[1, 2] = -1*np.sin(theta_x)
R1[2, 1] = np.sin(theta_x)
R2 = np.eye(3)
R2[0, 0] = np.cos(theta_y)
R2[2, 2] = np.cos(theta_y)
R2[2, 0] = -1*np.sin(theta_y)
R2[0, 2] = np.sin(theta_y)
R3 = np.eye(3)
R3[1, 1] = np.cos(theta_z)
R3[2, 2] = np.cos(theta_z)
R3[1, 2] = -1*np.sin(theta_z)
R3[2, 1] = np.sin(theta_z)
R = np.matmul(np.matmul(R1, R2), R3)
return R
# Paired point cloud dataset - DPC
class Paired_PC_Dataset(data.Dataset):
def __init__(self, args, dataset_dict, train=False):
self.num_points = args.num_input_points
self.pc_dataset = PC_Dataset(args, dataset_dict, train)
if not train:
ref_points = np.array(pv.read(args.ref_path).points)
target_pc = torch.FloatTensor(ref_points).to('cuda:0')
target_pc, _ = pytorch3d.ops.sample_farthest_points(target_pc[None,:], torch.Tensor([self.num_points]).to('cuda:0'))
self.target_pc = target_pc.squeeze()
else:
self.target_pc = None
def __getitem__(self, index):
source_pc, source_gt, source_label, source_name = self.pc_dataset.__getitem__(index)
if self.target_pc == None:
choices = list(range(0,index)) + list(range(index+1, len(self.pc_dataset.point_sets)))
target_index = random.choice(choices)
target_pc, target_gt, target_label, target_name = self.pc_dataset.__getitem__(target_index)
else:
target_pc = self.target_pc
return source_pc, target_pc, source_gt, source_label, source_name
def __len__(self):
return len(self.pc_dataset.point_sets)