-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
146 lines (115 loc) · 4.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""Implement reinforcement learning on NFL playcalling data"""
import collections
from tensorboardX import SummaryWriter
import numpy as np
from env import NFLPlaycallingEnv
GAMMA = 0.9
ALPHA = 0.2
TEST_EPISODES = 20
def random_play(environment, episodes=10, render=False):
for ep in range(episodes):
total_reward = 0.0
total_steps = 0
obs = environment.reset()
while True:
action = environment.action_space.sample()
obs, reward, done, _ = environment.step(action)
if render:
env.render()
total_reward += reward
total_steps += 1
if done:
break
print("Episode done in {} steps with {:.2f} reward".format(total_steps, total_reward))
class Agent:
def __init__(self, environment):
self.env = environment
self.state = self.env.reset()
self.rewards = collections.defaultdict(float)
self.transits = collections.defaultdict(collections.Counter)
self.values = collections.defaultdict(float)
def play_n_random_steps(self, count):
for _ in range(count):
action = self.env.action_space.sample()
new_state, reward, is_done, _ = self.env.step(action)
self.rewards[(self.state, action, new_state)] = reward
self.transits[(self.state, action)][new_state] += 1
self.state = self.env.reset() if is_done else new_state
def select_action(self, state):
best_action, best_value = None, None
for action in range(self.env.action_space.n):
action_value = self.values[(state, action)]
if best_value is None or best_value < action_value:
best_value = action_value
best_action = action
return best_action
def play_episode(self, env):
total_reward = 0.0
state = env.reset()
while True:
action = self.select_action(state)
new_state, reward, is_done, _ = env.step(action)
self.rewards[(state, action, new_state)] = reward
self.transits[(state, action)][new_state] += 1
total_reward += reward
if is_done:
break
state = new_state
return total_reward
def value_iteration(self):
# for state in range(self.env.observation_space.n):
for state in range(np.prod([x.n for x in self.env.observation_space])):
for action in range(self.env.action_space.n):
action_value = 0.0
target_counts = self.transits[(state, action)]
total = sum(target_counts.values())
for tgt_state, count in target_counts.items():
reward = self.rewards[(state, action, tgt_state)]
best_action = self.select_action(tgt_state)
action_value += (count / total) * (reward + GAMMA * self.values[(tgt_state, best_action)])
self.values[(state, action)] = action_value
def evaluation(self, state):
print('=====================================')
print('Evaluation')
print('=====================================')
eval_action = self.select_action(state)
print(f'For state: {state}, action is {eval_action}')
if __name__ == '__main__':
env = NFLPlaycallingEnv()
# random_play(env)
test_env = env
agent = Agent(environment=NFLPlaycallingEnv())
writer = SummaryWriter(comment="-q-learning")
iter_no = 0
best_reward = -7.0
while True:
iter_no += 1
print('=====================================')
print('Exploration')
agent.play_n_random_steps(100)
print('=====================================')
print('Exploitation')
agent.value_iteration()
reward = 0.0
for _ in range(TEST_EPISODES):
reward += agent.play_episode(test_env)
reward /= TEST_EPISODES
writer.add_scalar("reward", reward, iter_no)
if reward > best_reward:
print("Best reward updated %.3f -> %.3f" % (best_reward, reward))
print('=====================================')
best_reward = reward
writer.add_scalar("best_reward", best_reward, iter_no)
if reward > 3.0:
print('=====================================')
print("Solved in %d iterations!" % iter_no)
break
if iter_no >= 100:
print('=====================================')
print("Stopping after 100 iterations!")
break
writer.close()
# tensorboard --logdir runs
agent.evaluation((50,1,15,0,0,0))
agent.evaluation((98,3,2,0,0,0))
agent.evaluation((30,0,10,0,0,0))