-
Notifications
You must be signed in to change notification settings - Fork 6
/
mri_convolutional_neuralnet_3dim_vgg.py
176 lines (128 loc) · 5.41 KB
/
mri_convolutional_neuralnet_3dim_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import math
import numpy as np
import tensorflow as tf
from utils import *
from scipy.ndimage.interpolation import zoom
train_x, train_y = load_train_data()
min_age, max_age = min(train_y), max(train_y)
dn = 2
o0, o1, o2 = 300, 300, 200 #360, 512, 216
d0, d1, d2 = round(o0/dn), round(o1/dn), round(o2/dn)
d = d0 * d1 * d2
n_output = 1
p = 2 # stride size in pooling layer
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def conv3d(x, W):
return tf.nn.conv3d(x, W, strides=[1, 1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def max_pool_2x2x2(x):
return tf.nn.max_pool3d(x, ksize=[1, p, p, p, 1],
strides=[1, p, p, p, 1], padding='SAME')
def restore(saver, sess, name=''):
fname = "./tmp/model_" + name + ".ckpt"
if os.path.isfile(fname):
saver.restore(sess, fname)
with tf.device('/cpu:0'):
x = tf.placeholder(tf.float32, shape=[None, d])
y_ = tf.placeholder(tf.float32, shape=[None, n_output])
x_image = tf.reshape(x, [-1, d0, d1, d2, 1])
W_conv1a = weight_variable([3, 3, 3, 1, 64])
b_conv1a = bias_variable([64])
h_conv1a = tf.nn.relu(conv3d(x_image, W_conv1a) + b_conv1a)
W_conv1b = weight_variable([3, 3, 3, 64, 64])
b_conv1b = bias_variable([64])
x_image = tf.reshape(x, [-1, d0, d1, d2, 1])
h_conv1b = tf.nn.relu(conv3d(h_conv1a, W_conv1b) + b_conv1b)
h_pool1 = max_pool_2x2x2(h_conv1b)
W_conv2a = weight_variable([3, 3, 3, 64, 128])
b_conv2a = bias_variable([128])
h_conv2a = tf.nn.relu(conv3d(h_pool1, W_conv2a) + b_conv2a)
W_conv2b = weight_variable([3, 3, 3, 128, 128])
b_conv2b = bias_variable([128])
h_conv2b = tf.nn.relu(conv3d(h_conv2a, W_conv2b) + b_conv2b)
h_pool2 = max_pool_2x2x2(h_conv2b)
W_conv3a = weight_variable([3, 3, 3, 128, 256])
b_conv3a = bias_variable([256])
h_conv3a = tf.nn.relu(conv3d(h_pool2, W_conv3a) + b_conv3a)
W_conv3b = weight_variable([3, 3, 3, 256, 256])
b_conv3b = bias_variable([256])
h_conv3b = tf.nn.relu(conv3d(h_conv3a, W_conv3b) + b_conv3b)
h_pool3 = max_pool_2x2x2(h_conv3b)
W_conv4a = weight_variable([3, 3, 3, 256, 512])
b_conv4a = bias_variable([512])
h_conv4a = tf.nn.relu(conv3d(h_pool3, W_conv4a) + b_conv4a)
W_conv4b = weight_variable([3, 3, 3, 512, 512])
b_conv4b = bias_variable([512])
h_conv4b = tf.nn.relu(conv3d(h_conv4a, W_conv4b) + b_conv4b)
W_conv4c = weight_variable([3, 3, 3, 512, 512])
b_conv4c = bias_variable([512])
h_conv4c = tf.nn.relu(conv3d(h_conv4b, W_conv4c) + b_conv4c)
h_pool4 = max_pool_2x2x2(h_conv4c)
W_conv5a = weight_variable([3, 3, 3, 512, 512])
b_conv5a = bias_variable([512])
h_conv5a = tf.nn.relu(conv3d(h_pool4, W_conv5a) + b_conv5a)
W_conv5b = weight_variable([3, 3, 3, 512, 512])
b_conv5b = bias_variable([512])
h_conv5b = tf.nn.relu(conv3d(h_conv5a, W_conv5b) + b_conv5b)
W_conv5c = weight_variable([3, 3, 3, 512, 512])
b_conv5c = bias_variable([512])
h_conv5c = tf.nn.relu(conv3d(h_conv5b, W_conv5c) + b_conv5c)
h_pool5 = max_pool_2x2x2(h_conv5c)
n_pool = 5
dt = 2 ** n_pool
drow = math.ceil(d0/dt) * math.ceil(d1/dt) * math.ceil(d2/dt) * 512 # vulnerable
h_pool5_flat = tf.reshape(h_pool5, [-1, drow])
keep_prob = tf.placeholder(tf.float32)
with tf.device('/gpu:0'):
W_fc0 = weight_variable([drow, 8192])
b_fc0 = bias_variable([8192])
h_fc0 = tf.nn.relu(tf.matmul(h_pool5_flat, W_fc0) + b_fc0)
h_fc0_drop = tf.nn.dropout(h_fc0, keep_prob)
W_fc1 = weight_variable([8192, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_fc0_drop, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)
W_fc3 = weight_variable([10, 1])
b_fc3 = bias_variable([1])
y_conv= tf.matmul(h_fc2_drop, W_fc3) + b_fc3
#error = tf.sqrt(tf.reduce_mean(tf.square(tf.sub(y_, y_conv))))
error = tf.abs(tf.sub(y_, y_conv))
train_step = tf.train.GradientDescentOptimizer(2e-5).minimize(error)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()
restore(saver, sess, name='3dim_vgg')
for i in range(20000):
error_sum = 0.0
for j in range(len(train_x)):
err = 0.0
shape = train_x[j].shape
batch_x = normalize_image(crop_image(train_x[j].get_data(), [o0, o1, o2]))
r0, r1, r2 = np.random.choice(o0, d0), np.random.choice(o1, d1), np.random.choice(o2, d2)
batch_x = batch_x[r0,:,:][:,r1,:][:,:,r2].reshape(1, d)
batch_y = np.array([[train_y[j]]])
fetches = [train_step, error, y_conv]
t = sess.run(fetches, feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.3})
err = t[1]
error_sum += err[0][0]
pred = t[2]
print(i, j, train_y[j], pred[0][0], err, error_sum)
if j%2 == 0:
msg = '{} {} {} {} {}'.format(i, j, pred[0][0], err[0][0], error_sum)
os.system("curl \"https://api.telegram.org/bot236245101:AAFZ12aHX2emHeZuU99R11TdWMk9fZfl1j0/sendMessage?chat_id=237652977&text=" + msg + "\"")
print('')
saver.save(sess, "./tmp/model_3dim_vgg.ckpt")