-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathclasses.v
638 lines (545 loc) · 28.9 KB
/
classes.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
From iris.bi Require Export bi.
From iris.proofmode Require Import base.
From iris.proofmode Require Export modalities.
From stdpp Require Import namespaces.
Set Default Proof Using "Type".
Import bi.
Class FromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
from_assumption : □?p P ⊢ Q.
Arguments FromAssumption {_} _ _%I _%I : simpl never.
Arguments from_assumption {_} _ _%I _%I {_}.
Hint Mode FromAssumption + + - - : typeclass_instances.
Class KnownLFromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
knownl_from_assumption :> FromAssumption p P Q.
Arguments KnownLFromAssumption {_} _ _%I _%I : simpl never.
Arguments knownl_from_assumption {_} _ _%I _%I {_}.
Hint Mode KnownLFromAssumption + + ! - : typeclass_instances.
Class KnownRFromAssumption {PROP : bi} (p : bool) (P Q : PROP) :=
knownr_from_assumption :> FromAssumption p P Q.
Arguments KnownRFromAssumption {_} _ _%I _%I : simpl never.
Arguments knownr_from_assumption {_} _ _%I _%I {_}.
Hint Mode KnownRFromAssumption + + - ! : typeclass_instances.
Class IntoPure {PROP : bi} (P : PROP) (φ : Prop) :=
into_pure : P ⊢ ⌜φ⌝.
Arguments IntoPure {_} _%I _%type_scope : simpl never.
Arguments into_pure {_} _%I _%type_scope {_}.
Hint Mode IntoPure + ! - : typeclass_instances.
(* [IntoPureT] is a variant of [IntoPure] with the argument in [Type] to avoid
some shortcoming of unification in Coq's type class search. An example where we
use this workaround is to repair the following instance:
Global Instance into_exist_and_pure P Q (φ : Prop) :
IntoPure P φ → IntoExist (P ∧ Q) (λ _ : φ, Q).
Coq is unable to use this instance: [class_apply] -- which is used by type class
search -- fails with the error that it cannot unify [Prop] and [Type]. This is
probably caused because [class_apply] uses an ancient unification algorith. The
[refine] tactic -- which uses a better unification algorithm -- succeeds to
apply the above instance.
Since we do not want to define [Hint Extern] declarations using [refine] for
any instance like [into_exist_and_pure], we factor this out in the class
[IntoPureT]. This way, we only have to declare a [Hint Extern] using [refine]
once, and use [IntoPureT] in any instance like [into_exist_and_pure].
TODO: Report this as a Coq bug, or wait for https://github.com/coq/coq/pull/991
to be finished and merged someday. *)
Class IntoPureT {PROP : bi} (P : PROP) (φ : Type) :=
into_pureT : ∃ ψ : Prop, φ = ψ ∧ IntoPure P ψ.
Lemma into_pureT_hint {PROP : bi} (P : PROP) (φ : Prop) : IntoPure P φ → IntoPureT P φ.
Proof. by exists φ. Qed.
Hint Extern 0 (IntoPureT _ _) =>
notypeclasses refine (into_pureT_hint _ _ _) : typeclass_instances.
(** [FromPure] is used when introducing a pure assertion. It is used
by iPure, the "[%]" specialization pattern, and the [with "[%]"]
pattern when using [iAssert].
The [a] Boolean asserts whether we introduce the pure assertion in
an affine way or in an absorbing way. When [FromPure true P φ] is
derived, then [FromPure false P φ] can always be derived too. We
use [true] for specialization patterns and [false] for the
[iPureIntro] tactic.
This Boolean is not needed for [IntoPure], because in the case of
[IntoPure], we can have the same behavior by asking that [P] be
[Affine]. *)
Class FromPure {PROP : bi} (a : bool) (P : PROP) (φ : Prop) :=
from_pure : <affine>?a ⌜φ⌝ ⊢ P.
Arguments FromPure {_} _ _%I _%type_scope : simpl never.
Arguments from_pure {_} _ _%I _%type_scope {_}.
Hint Mode FromPure + + ! - : typeclass_instances.
Class FromPureT {PROP : bi} (a : bool) (P : PROP) (φ : Type) :=
from_pureT : ∃ ψ : Prop, φ = ψ ∧ FromPure a P ψ.
Lemma from_pureT_hint {PROP : bi} (a : bool) (P : PROP) (φ : Prop) :
FromPure a P φ → FromPureT a P φ.
Proof. by exists φ. Qed.
Hint Extern 0 (FromPureT _ _ _) =>
notypeclasses refine (from_pureT_hint _ _ _ _) : typeclass_instances.
Class IntoInternalEq {PROP : sbi} {A : ofeT} (P : PROP) (x y : A) :=
into_internal_eq : P ⊢ x ≡ y.
Arguments IntoInternalEq {_ _} _%I _%type_scope _%type_scope : simpl never.
Arguments into_internal_eq {_ _} _%I _%type_scope _%type_scope {_}.
Hint Mode IntoInternalEq + - ! - - : typeclass_instances.
Class IntoPersistent {PROP : bi} (p : bool) (P Q : PROP) :=
into_persistent : <pers>?p P ⊢ <pers> Q.
Arguments IntoPersistent {_} _ _%I _%I : simpl never.
Arguments into_persistent {_} _ _%I _%I {_}.
Hint Mode IntoPersistent + + ! - : typeclass_instances.
(** The [FromModal M P Q] class is used by the [iModIntro] tactic to transform
a goal [P] into a modality [M] and proposition [Q].
The inputs are [P] and [sel] and the outputs are [M] and [Q].
The input [sel] can be used to specify which modality to introduce in case there
are multiple choices to turn [P] into a modality. For example, given [⎡|==> R⎤],
[sel] can be either [|==> ?e] or [⎡ ?e ⎤], which turn it into an update modality
or embedding, respectively. In case there is no need to specify the modality to
introduce, [sel] should be an evar.
For modalities [N] that do not need to augment the proof mode environment, one
can define an instance [FromModal modality_id (N P) P]. Defining such an
instance only imposes the proof obligation [P ⊢ N P]. Examples of such
modalities [N] are [bupd], [fupd], [except_0], [monPred_subjectively] and
[bi_absorbingly]. *)
Class FromModal {PROP1 PROP2 : bi} {A}
(M : modality PROP1 PROP2) (sel : A) (P : PROP2) (Q : PROP1) :=
from_modal : M Q ⊢ P.
Arguments FromModal {_ _ _} _ _%I _%I _%I : simpl never.
Arguments from_modal {_ _ _} _ _ _%I _%I {_}.
Hint Mode FromModal - + - - - ! - : typeclass_instances.
(** The [FromAffinely P Q] class is used to add an [<affine>] modality to the
proposition [Q].
The input is [Q] and the output is [P]. *)
Class FromAffinely {PROP : bi} (P Q : PROP) :=
from_affinely : <affine> Q ⊢ P.
Arguments FromAffinely {_} _%I _%I : simpl never.
Arguments from_affinely {_} _%I _%I {_}.
Hint Mode FromAffinely + - ! : typeclass_instances.
(** The [IntoAbsorbingly P Q] class is used to add an [<absorb>] modality to
the proposition [Q].
The input is [Q] and the output is [P]. *)
Class IntoAbsorbingly {PROP : bi} (P Q : PROP) :=
into_absorbingly : P ⊢ <absorb> Q.
Arguments IntoAbsorbingly {_} _%I _%I.
Arguments into_absorbingly {_} _%I _%I {_}.
Hint Mode IntoAbsorbingly + - ! : typeclass_instances.
(*
Converting an assumption [R] into a wand [P -∗ Q] is done in three stages:
- Strip modalities and universal quantifiers of [R] until an arrow or a wand
has been obtained.
- Balance modalities in the arguments [P] and [Q] to match the goal (which used
for [iApply]) or the premise (when used with [iSpecialize] and a specific
hypothesis).
- Instantiate the premise of the wand or implication.
*)
Class IntoWand {PROP : bi} (p q : bool) (R P Q : PROP) :=
into_wand : □?p R ⊢ □?q P -∗ Q.
Arguments IntoWand {_} _ _ _%I _%I _%I : simpl never.
Arguments into_wand {_} _ _ _%I _%I _%I {_}.
Hint Mode IntoWand + + + ! - - : typeclass_instances.
Class IntoWand' {PROP : bi} (p q : bool) (R P Q : PROP) :=
into_wand' : IntoWand p q R P Q.
Arguments IntoWand' {_} _ _ _%I _%I _%I : simpl never.
Hint Mode IntoWand' + + + ! ! - : typeclass_instances.
Hint Mode IntoWand' + + + ! - ! : typeclass_instances.
Class FromWand {PROP : bi} (P Q1 Q2 : PROP) := from_wand : (Q1 -∗ Q2) ⊢ P.
Arguments FromWand {_} _%I _%I _%I : simpl never.
Arguments from_wand {_} _%I _%I _%I {_}.
Hint Mode FromWand + ! - - : typeclass_instances.
Class FromImpl {PROP : bi} (P Q1 Q2 : PROP) := from_impl : (Q1 → Q2) ⊢ P.
Arguments FromImpl {_} _%I _%I _%I : simpl never.
Arguments from_impl {_} _%I _%I _%I {_}.
Hint Mode FromImpl + ! - - : typeclass_instances.
Class FromSep {PROP : bi} (P Q1 Q2 : PROP) := from_sep : Q1 ∗ Q2 ⊢ P.
Arguments FromSep {_} _%I _%I _%I : simpl never.
Arguments from_sep {_} _%I _%I _%I {_}.
Hint Mode FromSep + ! - - : typeclass_instances.
Hint Mode FromSep + - ! ! : typeclass_instances. (* For iCombine *)
Class FromAnd {PROP : bi} (P Q1 Q2 : PROP) := from_and : Q1 ∧ Q2 ⊢ P.
Arguments FromAnd {_} _%I _%I _%I : simpl never.
Arguments from_and {_} _%I _%I _%I {_}.
Hint Mode FromAnd + ! - - : typeclass_instances.
Hint Mode FromAnd + - ! ! : typeclass_instances. (* For iCombine *)
Class IntoAnd {PROP : bi} (p : bool) (P Q1 Q2 : PROP) :=
into_and : □?p P ⊢ □?p (Q1 ∧ Q2).
Arguments IntoAnd {_} _ _%I _%I _%I : simpl never.
Arguments into_and {_} _ _%I _%I _%I {_}.
Hint Mode IntoAnd + + ! - - : typeclass_instances.
Class IntoSep {PROP : bi} (P Q1 Q2 : PROP) :=
into_sep : P ⊢ Q1 ∗ Q2.
Arguments IntoSep {_} _%I _%I _%I : simpl never.
Arguments into_sep {_} _%I _%I _%I {_}.
Hint Mode IntoSep + ! - - : typeclass_instances.
Class FromOr {PROP : bi} (P Q1 Q2 : PROP) := from_or : Q1 ∨ Q2 ⊢ P.
Arguments FromOr {_} _%I _%I _%I : simpl never.
Arguments from_or {_} _%I _%I _%I {_}.
Hint Mode FromOr + ! - - : typeclass_instances.
Class IntoOr {PROP : bi} (P Q1 Q2 : PROP) := into_or : P ⊢ Q1 ∨ Q2.
Arguments IntoOr {_} _%I _%I _%I : simpl never.
Arguments into_or {_} _%I _%I _%I {_}.
Hint Mode IntoOr + ! - - : typeclass_instances.
Class FromExist {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
from_exist : (∃ x, Φ x) ⊢ P.
Arguments FromExist {_ _} _%I _%I : simpl never.
Arguments from_exist {_ _} _%I _%I {_}.
Hint Mode FromExist + - ! - : typeclass_instances.
Class IntoExist {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
into_exist : P ⊢ ∃ x, Φ x.
Arguments IntoExist {_ _} _%I _%I : simpl never.
Arguments into_exist {_ _} _%I _%I {_}.
Hint Mode IntoExist + - ! - : typeclass_instances.
Class IntoForall {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
into_forall : P ⊢ ∀ x, Φ x.
Arguments IntoForall {_ _} _%I _%I : simpl never.
Arguments into_forall {_ _} _%I _%I {_}.
Hint Mode IntoForall + - ! - : typeclass_instances.
Class FromForall {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :=
from_forall : (∀ x, Φ x) ⊢ P.
Arguments FromForall {_ _} _%I _%I : simpl never.
Arguments from_forall {_ _} _%I _%I {_}.
Hint Mode FromForall + - ! - : typeclass_instances.
Class IsExcept0 {PROP : sbi} (Q : PROP) := is_except_0 : ◇ Q ⊢ Q.
Arguments IsExcept0 {_} _%I : simpl never.
Arguments is_except_0 {_} _%I {_}.
Hint Mode IsExcept0 + ! : typeclass_instances.
(** The [ElimModal φ p p' P P' Q Q'] class is used by the [iMod] tactic.
The inputs are [p], [P] and [Q], and the outputs are [φ], [p'], [P'] and [Q'].
The class is used to transform a hypothesis [P] into a hypothesis [P'], given
a goal [Q], which is simultaniously transformed into [Q']. The Booleans [p]
and [p'] indicate whether the original, respectively, updated hypothesis reside
in the persistent context (iff [true]). The proposition [φ] can be used to
express a side-condition that [iMod] will generate (if not [True]).
An example instance is:
ElimModal True p false (|={E1,E2}=> P) P (|={E1,E3}=> Q) (|={E2,E3}=> Q).
This instance expresses that to eliminate [|={E1,E2}=> P] the goal is
transformed from [|={E1,E3}=> Q] into [|={E2,E3}=> Q], and the resulting
hypothesis is moved into the spatial context (regardless of where it was
originally). A corresponding [ElimModal] instance for the Iris 1/2-style update
modality, would have a side-condition [φ] on the masks. *)
Class ElimModal {PROP : bi} (φ : Prop) (p p' : bool) (P P' : PROP) (Q Q' : PROP) :=
elim_modal : φ → □?p P ∗ (□?p' P' -∗ Q') ⊢ Q.
Arguments ElimModal {_} _ _ _ _%I _%I _%I _%I : simpl never.
Arguments elim_modal {_} _ _ _ _%I _%I _%I _%I {_}.
Hint Mode ElimModal + - ! - ! - ! - : typeclass_instances.
(* Used by the specialization pattern [ > ] in [iSpecialize] and [iAssert] to
add a modality to the goal corresponding to a premise/asserted proposition. *)
Class AddModal {PROP : bi} (P P' : PROP) (Q : PROP) :=
add_modal : P ∗ (P' -∗ Q) ⊢ Q.
Arguments AddModal {_} _%I _%I _%I : simpl never.
Arguments add_modal {_} _%I _%I _%I {_}.
Hint Mode AddModal + - ! ! : typeclass_instances.
Lemma add_modal_id {PROP : bi} (P Q : PROP) : AddModal P P Q.
Proof. by rewrite /AddModal wand_elim_r. Qed.
(** We use the classes [IsCons] and [IsApp] to make sure that instances such as
[frame_big_sepL_cons] and [frame_big_sepL_app] cannot be applied repeatedly
often when having [ [∗ list] k ↦ x ∈ ?e, Φ k x] with [?e] an evar. *)
Class IsCons {A} (l : list A) (x : A) (k : list A) := is_cons : l = x :: k.
Class IsApp {A} (l k1 k2 : list A) := is_app : l = k1 ++ k2.
Global Hint Mode IsCons + ! - - : typeclass_instances.
Global Hint Mode IsApp + ! - - : typeclass_instances.
Instance is_cons_cons {A} (x : A) (l : list A) : IsCons (x :: l) x l.
Proof. done. Qed.
Instance is_app_app {A} (l1 l2 : list A) : IsApp (l1 ++ l2) l1 l2.
Proof. done. Qed.
Class Frame {PROP : bi} (p : bool) (R P Q : PROP) := frame : □?p R ∗ Q ⊢ P.
Arguments Frame {_} _ _%I _%I _%I.
Arguments frame {_ _} _%I _%I _%I {_}.
Hint Mode Frame + + ! ! - : typeclass_instances.
(* The boolean [progress] indicates whether actual framing has been performed.
If it is [false], then the default instance [maybe_frame_default] below has been
used. *)
Class MaybeFrame {PROP : bi} (p : bool) (R P Q : PROP) (progress : bool) :=
maybe_frame : □?p R ∗ Q ⊢ P.
Arguments MaybeFrame {_} _ _%I _%I _%I _.
Arguments maybe_frame {_} _ _%I _%I _%I _ {_}.
Hint Mode MaybeFrame + + ! - - - : typeclass_instances.
Instance maybe_frame_frame {PROP : bi} p (R P Q : PROP) :
Frame p R P Q → MaybeFrame p R P Q true.
Proof. done. Qed.
Instance maybe_frame_default_persistent {PROP : bi} (R P : PROP) :
MaybeFrame true R P P false | 100.
Proof. intros. rewrite /MaybeFrame /=. by rewrite sep_elim_r. Qed.
Instance maybe_frame_default {PROP : bi} (R P : PROP) :
TCOr (Affine R) (Absorbing P) → MaybeFrame false R P P false | 100.
Proof. intros. rewrite /MaybeFrame /=. apply: sep_elim_r. Qed.
(* For each of the [MakeXxxx] class, there is a [KnownMakeXxxx]
variant, that only succeeds if the parameter(s) is not an evar. In
the case the parameter(s) is an evar, then [MakeXxxx] will not
instantiate it arbitrarily.
The reason for this is that if given an evar, these typeclasses
would typically try to instantiate this evar with some arbitrary
logical constructs such as emp or True. Therefore, we use an Hint
Mode to disable all the instances that would have this behavior. *)
Class MakeEmbed {PROP PROP' : bi} `{BiEmbed PROP PROP'} (P : PROP) (Q : PROP') :=
make_embed : ⎡P⎤ ⊣⊢ Q.
Arguments MakeEmbed {_ _ _} _%I _%I.
Hint Mode MakeEmbed + + + - - : typeclass_instances.
Class KnownMakeEmbed {PROP PROP' : bi} `{BiEmbed PROP PROP'} (P : PROP) (Q : PROP') :=
known_make_embed :> MakeEmbed P Q.
Arguments KnownMakeEmbed {_ _ _} _%I _%I.
Hint Mode KnownMakeEmbed + + + ! - : typeclass_instances.
Class MakeSep {PROP : bi} (P Q PQ : PROP) := make_sep : P ∗ Q ⊣⊢ PQ .
Arguments MakeSep {_} _%I _%I _%I.
Hint Mode MakeSep + - - - : typeclass_instances.
Class KnownLMakeSep {PROP : bi} (P Q PQ : PROP) :=
knownl_make_sep :> MakeSep P Q PQ.
Arguments KnownLMakeSep {_} _%I _%I _%I.
Hint Mode KnownLMakeSep + ! - - : typeclass_instances.
Class KnownRMakeSep {PROP : bi} (P Q PQ : PROP) :=
knownr_make_sep :> MakeSep P Q PQ.
Arguments KnownRMakeSep {_} _%I _%I _%I.
Hint Mode KnownRMakeSep + - ! - : typeclass_instances.
Class MakeAnd {PROP : bi} (P Q PQ : PROP) := make_and_l : P ∧ Q ⊣⊢ PQ.
Arguments MakeAnd {_} _%I _%I _%I.
Hint Mode MakeAnd + - - - : typeclass_instances.
Class KnownLMakeAnd {PROP : bi} (P Q PQ : PROP) :=
knownl_make_and :> MakeAnd P Q PQ.
Arguments KnownLMakeAnd {_} _%I _%I _%I.
Hint Mode KnownLMakeAnd + ! - - : typeclass_instances.
Class KnownRMakeAnd {PROP : bi} (P Q PQ : PROP) :=
knownr_make_and :> MakeAnd P Q PQ.
Arguments KnownRMakeAnd {_} _%I _%I _%I.
Hint Mode KnownRMakeAnd + - ! - : typeclass_instances.
Class MakeOr {PROP : bi} (P Q PQ : PROP) := make_or_l : P ∨ Q ⊣⊢ PQ.
Arguments MakeOr {_} _%I _%I _%I.
Hint Mode MakeOr + - - - : typeclass_instances.
Class KnownLMakeOr {PROP : bi} (P Q PQ : PROP) :=
knownl_make_or :> MakeOr P Q PQ.
Arguments KnownLMakeOr {_} _%I _%I _%I.
Hint Mode KnownLMakeOr + ! - - : typeclass_instances.
Class KnownRMakeOr {PROP : bi} (P Q PQ : PROP) := knownr_make_or :> MakeOr P Q PQ.
Arguments KnownRMakeOr {_} _%I _%I _%I.
Hint Mode KnownRMakeOr + - ! - : typeclass_instances.
Class MakeAffinely {PROP : bi} (P Q : PROP) :=
make_affinely : <affine> P ⊣⊢ Q.
Arguments MakeAffinely {_} _%I _%I.
Hint Mode MakeAffinely + - - : typeclass_instances.
Class KnownMakeAffinely {PROP : bi} (P Q : PROP) :=
known_make_affinely :> MakeAffinely P Q.
Arguments KnownMakeAffinely {_} _%I _%I.
Hint Mode KnownMakeAffinely + ! - : typeclass_instances.
Class MakeIntuitionistically {PROP : bi} (P Q : PROP) :=
make_intuitionistically : □ P ⊣⊢ Q.
Arguments MakeIntuitionistically {_} _%I _%I.
Hint Mode MakeIntuitionistically + - - : typeclass_instances.
Class KnownMakeIntuitionistically {PROP : bi} (P Q : PROP) :=
known_make_intuitionistically :> MakeIntuitionistically P Q.
Arguments KnownMakeIntuitionistically {_} _%I _%I.
Hint Mode KnownMakeIntuitionistically + ! - : typeclass_instances.
Class MakeAbsorbingly {PROP : bi} (P Q : PROP) :=
make_absorbingly : <absorb> P ⊣⊢ Q.
Arguments MakeAbsorbingly {_} _%I _%I.
Hint Mode MakeAbsorbingly + - - : typeclass_instances.
Class KnownMakeAbsorbingly {PROP : bi} (P Q : PROP) :=
known_make_absorbingly :> MakeAbsorbingly P Q.
Arguments KnownMakeAbsorbingly {_} _%I _%I.
Hint Mode KnownMakeAbsorbingly + ! - : typeclass_instances.
Class MakePersistently {PROP : bi} (P Q : PROP) :=
make_persistently : <pers> P ⊣⊢ Q.
Arguments MakePersistently {_} _%I _%I.
Hint Mode MakePersistently + - - : typeclass_instances.
Class KnownMakePersistently {PROP : bi} (P Q : PROP) :=
known_make_persistently :> MakePersistently P Q.
Arguments KnownMakePersistently {_} _%I _%I.
Hint Mode KnownMakePersistently + ! - : typeclass_instances.
Class MakeLaterN {PROP : sbi} (n : nat) (P lP : PROP) :=
make_laterN : ▷^n P ⊣⊢ lP.
Arguments MakeLaterN {_} _%nat _%I _%I.
Hint Mode MakeLaterN + + - - : typeclass_instances.
Class KnownMakeLaterN {PROP : sbi} (n : nat) (P lP : PROP) :=
known_make_laterN :> MakeLaterN n P lP.
Arguments KnownMakeLaterN {_} _%nat _%I _%I.
Hint Mode KnownMakeLaterN + + ! - : typeclass_instances.
Class MakeExcept0 {PROP : sbi} (P Q : PROP) :=
make_except_0 : sbi_except_0 P ⊣⊢ Q.
Arguments MakeExcept0 {_} _%I _%I.
Hint Mode MakeExcept0 + - - : typeclass_instances.
Class KnownMakeExcept0 {PROP : sbi} (P Q : PROP) :=
known_make_except_0 :> MakeExcept0 P Q.
Arguments KnownMakeExcept0 {_} _%I _%I.
Hint Mode KnownMakeExcept0 + ! - : typeclass_instances.
Class IntoExcept0 {PROP : sbi} (P Q : PROP) := into_except_0 : P ⊢ ◇ Q.
Arguments IntoExcept0 {_} _%I _%I : simpl never.
Arguments into_except_0 {_} _%I _%I {_}.
Hint Mode IntoExcept0 + ! - : typeclass_instances.
Hint Mode IntoExcept0 + - ! : typeclass_instances.
(* The class [MaybeIntoLaterN] has only two instances:
- The default instance [MaybeIntoLaterN n P P], i.e. [▷^n P -∗ P]
- The instance [IntoLaterN n P Q → MaybeIntoLaterN n P Q], where [IntoLaterN]
is identical to [MaybeIntoLaterN], but is supposed to make progress, i.e. it
should actually strip a later.
The point of using the auxilary class [IntoLaterN] is to ensure that the
default instance is not applied deeply inside a term, which may result in too
many definitions being unfolded (see issue #55).
For binary connectives we have the following instances:
<<
IntoLaterN n P P' MaybeIntoLaterN n Q Q'
------------------------------------------
IntoLaterN n (P /\ Q) (P' /\ Q')
IntoLaterN n Q Q'
-------------------------------
IntoLaterN n (P /\ Q) (P /\ Q')
>>
The Boolean [only_head] indicates whether laters should only be stripped in
head position or also below other logical connectives. For [iNext] it should
strip laters below other logical connectives, but this should not happen while
framing, e.g. the following should succeed:
<<
Lemma test_iFrame_later_1 P Q : P ∗ ▷ Q -∗ ▷ (P ∗ ▷ Q).
Proof. iIntros "H". iFrame "H". Qed.
>>
*)
Class MaybeIntoLaterN {PROP : sbi} (only_head : bool) (n : nat) (P Q : PROP) :=
maybe_into_laterN : P ⊢ ▷^n Q.
Arguments MaybeIntoLaterN {_} _ _%nat_scope _%I _%I.
Arguments maybe_into_laterN {_} _ _%nat_scope _%I _%I {_}.
Hint Mode MaybeIntoLaterN + + + - - : typeclass_instances.
Class IntoLaterN {PROP : sbi} (only_head : bool) (n : nat) (P Q : PROP) :=
into_laterN :> MaybeIntoLaterN only_head n P Q.
Arguments IntoLaterN {_} _ _%nat_scope _%I _%I.
Hint Mode IntoLaterN + + + ! - : typeclass_instances.
Instance maybe_into_laterN_default {PROP : sbi} only_head n (P : PROP) :
MaybeIntoLaterN only_head n P P | 1000.
Proof. apply laterN_intro. Qed.
(* In the case both parameters are evars and n=0, we have to stop the
search and unify both evars immediately instead of looping using
other instances. *)
Instance maybe_into_laterN_default_0 {PROP : sbi} only_head (P : PROP) :
MaybeIntoLaterN only_head 0 P P | 0.
Proof. apply _. Qed.
(** The class [IntoEmbed P Q] is used to transform hypotheses while introducing
embeddings using [iModIntro].
Input: the proposition [P], output: the proposition [Q] so that [P ⊢ ⎡Q⎤]. *)
Class IntoEmbed {PROP PROP' : bi} `{BiEmbed PROP PROP'} (P : PROP') (Q : PROP) :=
into_embed : P ⊢ ⎡Q⎤.
Arguments IntoEmbed {_ _ _} _%I _%I.
Arguments into_embed {_ _ _} _%I _%I {_}.
Hint Mode IntoEmbed + + + ! - : typeclass_instances.
(* We use two type classes for [AsEmpValid], in order to avoid loops in
typeclass search. Indeed, the [as_emp_valid_embed] instance would try
to add an arbitrary number of embeddings. To avoid this, the
[AsEmpValid0] type class cannot handle embeddings, and therefore
[as_emp_valid_embed] only tries to add one embedding, and we never try
to insert nested embeddings. This has the additional advantage of
always trying [as_emp_valid_embed] as a second option, so that this
instance is never used when the BI is unknown.
No Hint Modes are declared here. The appropriate one would be
[Hint Mode - ! -], but the fact that Coq ignores primitive
projections for hints modes would make this fail.*)
Class AsEmpValid {PROP : bi} (φ : Prop) (P : PROP) :=
as_emp_valid : φ ↔ bi_emp_valid P.
Arguments AsEmpValid {_} _%type _%I.
Class AsEmpValid0 {PROP : bi} (φ : Prop) (P : PROP) :=
as_emp_valid_here : AsEmpValid φ P.
Arguments AsEmpValid0 {_} _%type _%I.
Existing Instance as_emp_valid_here | 0.
Lemma as_emp_valid_1 (φ : Prop) {PROP : bi} (P : PROP) `{!AsEmpValid φ P} :
φ → bi_emp_valid P.
Proof. by apply as_emp_valid. Qed.
Lemma as_emp_valid_2 (φ : Prop) {PROP : bi} (P : PROP) `{!AsEmpValid φ P} :
bi_emp_valid P → φ.
Proof. by apply as_emp_valid. Qed.
(* Input: [P]; Outputs: [N],
Extracts the namespace associated with an invariant assertion. Used for [iInv]. *)
Class IntoInv {PROP : bi} (P: PROP) (N: namespace).
Arguments IntoInv {_} _%I _.
Hint Mode IntoInv + ! - : typeclass_instances.
(** Accessors.
This definition only exists for the purpose of the proof mode; a truly
usable and general form would use telescopes and also allow binders for the
closing view shift. [γ] is an [option] to make it easy for ElimAcc
instances to recognize the [emp] case and make it look nicer. *)
Definition accessor {PROP : bi} {X : Type} (M1 M2 : PROP → PROP)
(α β : X → PROP) (mγ : X → option PROP) : PROP :=
M1 (∃ x, α x ∗ (β x -∗ M2 (default emp (mγ x))))%I.
(* Typeclass for assertions around which accessors can be elliminated.
Inputs: [Q], [E1], [E2], [α], [β], [γ]
Outputs: [Q']
Elliminates an accessor [accessor E1 E2 α β γ] in goal [Q'], turning the goal
into [Q'] with a new assumption [α x]. *)
Class ElimAcc {PROP : bi} {X : Type} (M1 M2 : PROP → PROP)
(α β : X → PROP) (mγ : X → option PROP)
(Q : PROP) (Q' : X → PROP) :=
elim_acc : ((∀ x, α x -∗ Q' x) -∗ accessor M1 M2 α β mγ -∗ Q).
Arguments ElimAcc {_} {_} _%I _%I _%I _%I _%I _%I : simpl never.
Arguments elim_acc {_} {_} _%I _%I _%I _%I _%I _%I {_}.
Hint Mode ElimAcc + ! ! ! ! ! ! ! - : typeclass_instances.
(* Turn [P] into an accessor.
Inputs:
- [Pacc]: the assertion to be turned into an accessor (e.g. an invariant)
Outputs:
- [Pin]: additional logic assertion needed for starting the accessor.
- [φ]: additional Coq assertion needed for starting the accessor.
- [X] [α], [β], [γ]: the accessor parameters.
- [M1], [M2]: the two accessor modalities (they will typically still have
some evars though, e.g. for the masks)
*)
Class IntoAcc {PROP : bi} {X : Type} (Pacc : PROP) (φ : Prop) (Pin : PROP)
(M1 M2 : PROP → PROP) (α β : X → PROP) (mγ : X → option PROP) :=
into_acc : φ → Pacc -∗ Pin -∗ accessor M1 M2 α β mγ.
Arguments IntoAcc {_} {_} _%I _ _%I _%I _%I _%I _%I _%I : simpl never.
Arguments into_acc {_} {_} _%I _ _%I _%I _%I _%I _%I _%I {_} : simpl never.
Hint Mode IntoAcc + - ! - - - - - - - : typeclass_instances.
(* The typeclass used for the [iInv] tactic.
Input: [Pinv]
Arguments:
- [Pinv] is an invariant assertion
- [Pin] is an additional logic assertion needed for opening an invariant
- [φ] is an additional Coq assertion needed for opening an invariant
- [Pout] is the assertion obtained by opening the invariant
- [Pclose] is the closing view shift. It must be (Some _) or None
when doing typeclass search as instances are allowed to make a
case distinction on whether the user wants a closing view-shift or not.
- [Q] is a goal on which iInv may be invoked
- [Q'] is the transformed goal that must be proved after opening the invariant.
Most users will never want to instantiate this; there is a general instance
based on [ElimAcc] and [IntoAcc]. However, logics like Iris 2 that support
invariants but not mask-changing fancy updates can use this class directly to
still benefit from [iInv].
TODO: Add support for a binder (like accessors have it).
*)
Class ElimInv {PROP : bi} {X : Type} (φ : Prop)
(Pinv Pin : PROP) (Pout : X → PROP) (mPclose : option (X → PROP))
(Q : PROP) (Q' : X → PROP) :=
elim_inv : φ → Pinv ∗ Pin ∗ (∀ x, Pout x ∗ (default (λ _, emp) mPclose) x -∗ Q' x) ⊢ Q.
Arguments ElimInv {_} {_} _ _%I _%I _%I _%I _%I _%I : simpl never.
Arguments elim_inv {_} {_} _ _%I _%I _%I _%I _%I _%I {_}.
Hint Mode ElimInv + - - ! - - ! ! - : typeclass_instances.
(* We make sure that tactics that perform actions on *specific* hypotheses or
parts of the goal look through the [tc_opaque] connective, which is used to make
definitions opaque for type class search. For example, when using `iDestruct`,
an explicit hypothesis is affected, and as such, we should look through opaque
definitions. However, when using `iFrame` or `iNext`, arbitrary hypotheses or
parts of the goal are affected, and as such, type class opacity should be
respected.
This means that there are [tc_opaque] instances for all proofmode type classes
with the exception of:
- [FromAssumption] used by [iAssumption]
- [Frame] and [MaybeFrame] used by [iFrame]
- [MaybeIntoLaterN] and [FromLaterN] used by [iNext]
- [IntoPersistent] used by [iPersistent]
*)
Instance into_pure_tc_opaque {PROP : bi} (P : PROP) φ :
IntoPure P φ → IntoPure (tc_opaque P) φ := id.
Instance from_pure_tc_opaque {PROP : bi} (a : bool) (P : PROP) φ :
FromPure a P φ → FromPure a (tc_opaque P) φ := id.
Instance from_wand_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromWand P Q1 Q2 → FromWand (tc_opaque P) Q1 Q2 := id.
Instance into_wand_tc_opaque {PROP : bi} p q (R P Q : PROP) :
IntoWand p q R P Q → IntoWand p q (tc_opaque R) P Q := id.
(* Higher precedence than [from_and_sep] so that [iCombine] does not loop. *)
Instance from_and_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromAnd P Q1 Q2 → FromAnd (tc_opaque P) Q1 Q2 | 102 := id.
Instance into_and_tc_opaque {PROP : bi} p (P Q1 Q2 : PROP) :
IntoAnd p P Q1 Q2 → IntoAnd p (tc_opaque P) Q1 Q2 := id.
Instance from_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
FromOr P Q1 Q2 → FromOr (tc_opaque P) Q1 Q2 := id.
Instance into_or_tc_opaque {PROP : bi} (P Q1 Q2 : PROP) :
IntoOr P Q1 Q2 → IntoOr (tc_opaque P) Q1 Q2 := id.
Instance from_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :
FromExist P Φ → FromExist (tc_opaque P) Φ := id.
Instance into_exist_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :
IntoExist P Φ → IntoExist (tc_opaque P) Φ := id.
Instance into_forall_tc_opaque {PROP : bi} {A} (P : PROP) (Φ : A → PROP) :
IntoForall P Φ → IntoForall (tc_opaque P) Φ := id.
Instance from_modal_tc_opaque {PROP1 PROP2 : bi} {A}
M (sel : A) (P : PROP2) (Q : PROP1) :
FromModal M sel P Q → FromModal M sel (tc_opaque P) Q := id.
Instance elim_modal_tc_opaque {PROP : bi} φ p p' (P P' Q Q' : PROP) :
ElimModal φ p p' P P' Q Q' → ElimModal φ p p' (tc_opaque P) P' Q Q' := id.
Instance into_inv_tc_opaque {PROP : bi} (P : PROP) N :
IntoInv P N → IntoInv (tc_opaque P) N := id.
Instance elim_inv_tc_opaque {PROP : sbi} {X} φ Pinv Pin Pout Pclose Q Q' :
ElimInv (PROP:=PROP) (X:=X) φ Pinv Pin Pout Pclose Q Q' →
ElimInv φ (tc_opaque Pinv) Pin Pout Pclose Q Q' := id.