-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_model.py
838 lines (727 loc) · 44.3 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
#from evaluate_baseline_task2 import evaluate_model
import sys, os
import time
import json
import pickle
import argparse
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
import torch.utils.data as utils
from models.SELD_Model import SELD_Model
from utility_functions import save_array_to_csv,gen_submission_list_task2, readFile
from metrics import location_sensitive_detection
import shutil
from torchinfo import summary
import wandb
from Dcase21_metrics import *
def save_model(model, optimizer, state, path,scheduler=None):
if isinstance(model, torch.nn.DataParallel):
model = model.module # save state dict of wrapped module
if len(os.path.dirname(path)) > 0 and not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
if scheduler is not None:
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'state': state, # state of training loop (was 'step')
'scheduler_state_dict' : scheduler.state_dict(),
'random_states':(np.random.get_state(), torch.get_rng_state(), torch.cuda.get_rng_state() if torch.cuda.is_available() else None)
}, path)
else:
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'state': state, # state of training loop (was 'step')
'random_states':(np.random.get_state(), torch.get_rng_state(), torch.cuda.get_rng_state() if torch.cuda.is_available() else None)
}, path)
def load_model(model, optimizer, path, cuda, device,scheduler=None):
if isinstance(model, torch.nn.DataParallel):
model = model.module # load state dict of wrapped module
if cuda:
checkpoint = torch.load(path, map_location=device)
else:
checkpoint = torch.load(path, map_location='cpu')
try:
model.load_state_dict(checkpoint['model_state_dict'])
except:
# work-around for loading checkpoints where DataParallel was saved instead of inner module
from collections import OrderedDict
model_state_dict_fixed = OrderedDict()
prefix = 'module.'
for k, v in checkpoint['model_state_dict'].items():
if k.startswith(prefix):
k = k[len(prefix):]
model_state_dict_fixed[k] = v
model.load_state_dict(model_state_dict_fixed)
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
if 'state' in checkpoint:
state = checkpoint['state']
else:
# older checkpoints only store step, rest of state won't be there
state = {'step': checkpoint['step']}
np.random.set_state(checkpoint['random_states'][0])
torch.set_rng_state(checkpoint['random_states'][1].cpu())
if torch.cuda.is_available() and checkpoint['random_states'][2] is not None:
torch.cuda.set_rng_state(checkpoint['random_states'][2].cpu())
return state
def evaluate_test(model,device, dataloader,epoch=0,max_loc_value=2.,num_frames=600,spatial_threshold=2.):
TP = 0
FP = 0
FN = 0
count = 0
output_classes=args.output_classes
class_overlaps=args.class_overlaps
model.eval()
eval_metrics = SELDMetrics(nb_classes=output_classes, doa_threshold=args.Dcase21_metrics_DOA_threshold)
with tqdm(total=len(dataloader) // 1) as pbar, torch.no_grad():
for example_num, (x, target) in enumerate(dataloader):
x = x.to(device)
target = target.to(device)
sed, doa = model(x)
sed = sed.cpu().numpy().squeeze()
doa = doa.cpu().numpy().squeeze()
target = target.cpu().numpy().squeeze()
#in the target matrices sed and doa are joint
sed_target = target[:,:args.output_classes*args.class_overlaps]
doa_target = target[:,args.output_classes*args.class_overlaps:]
prediction,prediction_dict = gen_submission_list_task2(sed, doa,
max_overlaps=class_overlaps,
max_loc_value=max_loc_value)
target,target_dict = gen_submission_list_task2(sed_target, doa_target,
max_overlaps=class_overlaps,
max_loc_value=max_loc_value)
pred_labels =segment_labels(prediction_dict, num_frames)
ref_labels =segment_labels(target_dict, num_frames)
# Calculated scores
eval_metrics.update_seld_scores(pred_labels, ref_labels)
tp, fp, fn, _ = location_sensitive_detection(prediction, target, num_frames,
spatial_threshold, False)
TP += tp
FP += fp
FN += fn
count += 1
pbar.update(1)
#compute total F score
precision = TP / (TP + FP + sys.float_info.epsilon)
recall = TP / (TP + FN + sys.float_info.epsilon)
F_score = 2 * ((precision * recall) / (precision + recall + sys.float_info.epsilon))
Nref=TP+FN
Nsys=TP+FP
ER_score = (max(Nref, Nsys) - TP) / (Nref + 0.0)
ER_dcase21, F_dcase21, LE_dcase21, LR_dcase21 = eval_metrics.compute_seld_scores()
SELD_dcase21 = np.mean([ER_dcase21,1 - F_dcase21, LE_dcase21/180,1 - LR_dcase21])
SELD_L3DAS21_LRLE = np.mean([ER_score,1 - F_score, LE_dcase21/180,1 - LR_dcase21])
CSL_score= np.mean([LE_dcase21/180,1 - LR_dcase21])
LSD_score=np.mean([1-F_score,ER_score])
test_results=[epoch,F_score,ER_score,precision,recall,TP,FP,FN,
CSL_score,LSD_score,SELD_L3DAS21_LRLE,
SELD_dcase21,ER_dcase21, F_dcase21, LE_dcase21, LR_dcase21]
#visualize and save results
print ('*******************************')
print ('RESULTS')
print ('TP: ' , TP)
print ('FP: ' , FP)
print ('FN: ' , FN)
print ('******** SELD (F ER L3DAS21 - LE LR DCASE21) ***********')
print ('Global SELD score: ', SELD_L3DAS21_LRLE)
print ('LSD score: ', LSD_score)
print ('CSL score: ', CSL_score)
print ('F score: ', F_score)
print ('ER score: ', ER_score)
print ('LE: ', LE_dcase21)
print ('LR: ', LR_dcase21)
return test_results
def evaluate(model, device, criterion_sed, criterion_doa, dataloader):
#compute loss without backprop
model.eval()
test_loss = 0.
with tqdm(total=len(dataloader) // args.batch_size) as pbar, torch.no_grad():
for example_num, (x, target) in enumerate(dataloader):
target = target.to(device)
x = x.to(device)
t = time.time()
# Compute loss for each instrument/model
#sed, doa = model(x)
loss = seld_loss(x, target, model, criterion_sed, criterion_doa)
test_loss += (1. / float(example_num + 1)) * (loss - test_loss)
pbar.set_description("Current loss: {:.4f}".format(test_loss))
pbar.update(1)
return test_loss
def seld_loss(x, target, model, criterion_sed, criterion_doa):
'''
compute seld loss as weighted sum of sed (BCE) and doa (MSE) losses
'''
#divide labels into sed and doa (which are joint from the preprocessing)
target_sed = target[:,:,:args.output_classes*args.class_overlaps]
target_doa = target[:,:,args.output_classes*args.class_overlaps:]
#compute loss
sed, doa = model(x)
sed = torch.flatten(sed, start_dim=1)
doa = torch.flatten(doa, start_dim=1)
target_sed = torch.flatten(target_sed, start_dim=1)
target_doa = torch.flatten(target_doa, start_dim=1)
loss_sed = criterion_sed(sed, target_sed) * args.sed_loss_weight
loss_doa = criterion_doa(doa, target_doa) * args.doa_loss_weight
return loss_sed + loss_doa
def main(args):
if args.use_cuda:
device = 'cuda:' + str(args.gpu_id)
else:
device = 'cpu'
if args.fixed_seed:
seed = 1
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
#LOAD DATASET
print ('\nLoading dataset')
with open(args.training_predictors_path, 'rb') as f:
training_predictors = pickle.load(f)
with open(args.training_target_path, 'rb') as f:
training_target = pickle.load(f)
with open(args.validation_predictors_path, 'rb') as f:
validation_predictors = pickle.load(f)
with open(args.validation_target_path, 'rb') as f:
validation_target = pickle.load(f)
with open(args.test_predictors_path, 'rb') as f:
test_predictors = pickle.load(f)
with open(args.test_target_path, 'rb') as f:
test_target = pickle.load(f)
phase_string='_Phase' if args.phase else ''
dataset_string='L3DAS21_'+str(args.n_mics)+'Mics_Magnidute'+phase_string+'_'+str(args.input_channels)+'Ch'
#####################################NORMALIZATION####################################
if args.dataset_normalization not in {'False','false','None','none'}:
print('\nDataset_Normalization')
if args.dataset_normalization in{'DQ_Normalization','UnitNormNormalization','UnitNorm'}:
training_predictors = torch.tensor(training_predictors)
training_target = torch.tensor(training_target)
validation_predictors = torch.tensor(validation_predictors)
validation_target = torch.tensor(validation_target)
test_predictors = torch.tensor(test_predictors)
test_target = torch.tensor(test_target)
if args.n_mics==2:
if args.domain in ['DQ','dq','dQ','Dual_Quaternion','dual_quaternion']:
dataset_string+=' Dataset Normalization for 2Mic 8Ch Magnitude Dual Quaternion UnitNorm'
print('Dataset Normalization for 2Mic 8Ch Magnitude Dual Quaternion UnitNorm')
## TRAINING PREDICTORS ##
q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3 = torch.chunk(training_predictors[:,:8,:,:], chunks=8, dim=1)
denominator_0 = q_0 ** 2 + q_1 ** 2 + q_2 ** 2 + q_3 ** 2
denominator_1 = torch.sqrt(denominator_0)
deno_cross = q_0 * p_0 + q_1 * p_1 + q_2 * p_2 + q_3 * p_3
p_0 = p_0 - deno_cross / denominator_0 * q_0
p_1 = p_1 - deno_cross / denominator_0 * q_1
p_2 = p_2 - deno_cross / denominator_0 * q_2
p_3 = p_3 - deno_cross / denominator_0 * q_3
q_0 = q_0 / denominator_1
q_1 = q_1 / denominator_1
q_2 = q_2 / denominator_1
q_3 = q_3 / denominator_1
training_predictors[:,:8,:,:] = torch.cat([q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3], dim=1)
## VALIDATION PREDICTORS ##
q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3 = torch.chunk(validation_predictors[:,:8,:,:], chunks=8, dim=1)
denominator_0 = q_0 ** 2 + q_1 ** 2 + q_2 ** 2 + q_3 ** 2
denominator_1 = torch.sqrt(denominator_0)
deno_cross = q_0 * p_0 + q_1 * p_1 + q_2 * p_2 + q_3 * p_3
p_0 = p_0 - deno_cross / denominator_0 * q_0
p_1 = p_1 - deno_cross / denominator_0 * q_1
p_2 = p_2 - deno_cross / denominator_0 * q_2
p_3 = p_3 - deno_cross / denominator_0 * q_3
q_0 = q_0 / denominator_1
q_1 = q_1 / denominator_1
q_2 = q_2 / denominator_1
q_3 = q_3 / denominator_1
validation_predictors[:,:8,:,:] = torch.cat([q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3], dim=1)
## TEST PREDICTORS ##
q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3 = torch.chunk(test_predictors[:,:8,:,:], chunks=8, dim=1)
denominator_0 = q_0 ** 2 + q_1 ** 2 + q_2 ** 2 + q_3 ** 2
denominator_1 = torch.sqrt(denominator_0)
deno_cross = q_0 * p_0 + q_1 * p_1 + q_2 * p_2 + q_3 * p_3
p_0 = p_0 - deno_cross / denominator_0 * q_0
p_1 = p_1 - deno_cross / denominator_0 * q_1
p_2 = p_2 - deno_cross / denominator_0 * q_2
p_3 = p_3 - deno_cross / denominator_0 * q_3
q_0 = q_0 / denominator_1
q_1 = q_1 / denominator_1
q_2 = q_2 / denominator_1
q_3 = q_3 / denominator_1
test_predictors[:,:8,:,:] = torch.cat([q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3], dim=1)
if args.phase:
raise ValueError('DATASET NORMALIZATION FOR PHASE DUAL QUATERNION NOT YET IMPLEMENTED')
print('Dataset Normalization for 2Mic 16Ch Magnitude-Phase Dual Quaternion ')
training_predictors = np.array(training_predictors)
training_target = np.array(training_target)
validation_predictors = np.array(validation_predictors)
validation_target = np.array(validation_target)
test_predictors = np.array(test_predictors)
test_target = np.array(test_target)
print ('\nShapes:')
print ('Training predictors: ', training_predictors.shape)
print ('Validation predictors: ', validation_predictors.shape)
print ('Test predictors: ', test_predictors.shape)
print ('Training target: ', training_target.shape)
print ('Validation target: ', validation_target.shape)
print ('Test target: ', test_target.shape)
else:
training_predictors = np.array(training_predictors)
training_target = np.array(training_target)
validation_predictors = np.array(validation_predictors)
validation_target = np.array(validation_target)
test_predictors = np.array(test_predictors)
test_target = np.array(test_target)
print ('\nShapes:')
print ('Training predictors: ', training_predictors.shape)
print ('Validation predictors: ', validation_predictors.shape)
print ('Test predictors: ', test_predictors.shape)
print ('Training target: ', training_target.shape)
print ('Validation target: ', validation_target.shape)
print ('Test target: ', test_target.shape)
if args.n_mics==1:
dataset_string+=' Dataset Normalization for 1Mic 4Ch Magnitude'
print('Dataset Normalization for 1Mic 4Ch Magnitude')
# Normalize training predictors with mean 0 and std 1
train_mag_min = np.mean(training_predictors[:,:4,:,:])
train_mag_std = np.std(training_predictors[:,:4,:,:])
training_predictors[:,:4,:,:] -= train_mag_min
training_predictors[:,:4,:,:] /= train_mag_std
# Normalize validation predictors with mean 0 and std 1
val_mag_min = np.mean(validation_predictors[:,:4,:,:])
val_mag_std = np.std(validation_predictors[:,:4,:,:])
validation_predictors[:,:4,:,:] -= val_mag_min
validation_predictors[:,:4,:,:] /= val_mag_std
# Normalize test predictors with mean 0 and std 1
test_mag_min = np.mean(test_predictors[:,:4,:,:])
test_mag_std = np.std(test_predictors[:,:4,:,:])
test_predictors[:,:4,:,:] -= test_mag_min
test_predictors[:,:4,:,:] /= test_mag_std
if args.phase:
dataset_string+=' Dataset Normalization for 1Mic 8Ch Magnitude-Phase'
print('Dataset Normalization for 1Mic 8Ch Magnitude-Phase')
train_phase_min = np.mean(training_predictors[:,4:,:,:])
train_phase_std = np.std(training_predictors[:,4:,:,:])
training_predictors[:,4:,:,:] -= train_phase_min
training_predictors[:,4:,:,:] /= train_phase_std
val_phase_min = np.mean(validation_predictors[:,4:,:,:])
val_phase_std = np.std(validation_predictors[:,4:,:,:])
validation_predictors[:,4:,:,:] -= val_phase_min
validation_predictors[:,4:,:,:] /= val_phase_std
test_phase_min = np.mean(test_predictors[:,4:,:,:])
test_phase_std = np.std(test_predictors[:,4:,:,:])
test_predictors[:,4:,:,:] -= test_phase_min
test_predictors[:,4:,:,:] /= test_phase_std
if args.n_mics==2:
dataset_string+=' Dataset Normalization for 2Mic 8Ch Magnitude'
print('Dataset Normalization for 2Mic 8Ch Magnitude')
# Normalize training predictors with mean 0 and std 1
train_mag_min = np.mean(training_predictors[:,:8,:,:])
train_mag_std = np.std(training_predictors[:,:8,:,:])
training_predictors[:,:8,:,:] -= train_mag_min
training_predictors[:,:8,:,:] /= train_mag_std
# Normalize validation predictors with mean 0 and std 1
val_mag_min = np.mean(validation_predictors[:,:8,:,:])
val_mag_std = np.std(validation_predictors[:,:8,:,:])
validation_predictors[:,:8,:,:] -= val_mag_min
validation_predictors[:,:8,:,:] /= val_mag_std
# Normalize test predictors with mean 0 and std 1
test_mag_min = np.mean(test_predictors[:,:8,:,:])
test_mag_std = np.std(test_predictors[:,:8,:,:])
test_predictors[:,:8,:,:] -= test_mag_min
test_predictors[:,:8,:,:] /= test_mag_std
if args.phase:
dataset_string+=' Dataset Normalization for 2Mic 16Ch Magnitude-Phase'
print('Dataset Normalization for 2Mic 16Ch Magnitude-Phase')
train_phase_min = np.mean(training_predictors[:,8:,:,:])
train_phase_std = np.std(training_predictors[:,8:,:,:])
training_predictors[:,8:,:,:] -= train_phase_min
training_predictors[:,8:,:,:] /= train_phase_std
val_phase_min = np.mean(validation_predictors[:,8:,:,:])
val_phase_std = np.std(validation_predictors[:,8:,:,:])
validation_predictors[:,8:,:,:] -= val_phase_min
validation_predictors[:,8:,:,:] /= val_phase_std
test_phase_min = np.mean(test_predictors[:,8:,:,:])
test_phase_std = np.std(test_predictors[:,8:,:,:])
test_predictors[:,8:,:,:] -= test_phase_min
test_predictors[:,8:,:,:] /= test_phase_std
else:
training_predictors = np.array(training_predictors)
training_target = np.array(training_target)
validation_predictors = np.array(validation_predictors)
validation_target = np.array(validation_target)
test_predictors = np.array(test_predictors)
test_target = np.array(test_target)
print ('\nShapes:')
print ('Training predictors: ', training_predictors.shape)
print ('Validation predictors: ', validation_predictors.shape)
print ('Test predictors: ', test_predictors.shape)
print ('Training target: ', training_target.shape)
print ('Validation target: ', validation_target.shape)
print ('Test target: ', test_target.shape)
###############################################################################
features_dim = int(test_target.shape[-2] * test_target.shape[-1])
#convert to tensor
training_predictors = torch.tensor(training_predictors).float()
validation_predictors = torch.tensor(validation_predictors).float()
test_predictors = torch.tensor(test_predictors).float()
training_target = torch.tensor(training_target).float()
validation_target = torch.tensor(validation_target).float()
test_target = torch.tensor(test_target).float()
#build dataset from tensors
tr_dataset = utils.TensorDataset(training_predictors, training_target)
val_dataset = utils.TensorDataset(validation_predictors, validation_target)
test_dataset = utils.TensorDataset(test_predictors, test_target)
#build data loader from dataset
tr_data = utils.DataLoader(tr_dataset, args.batch_size, shuffle=True, pin_memory=True)
val_data = utils.DataLoader(val_dataset, args.batch_size, shuffle=False, pin_memory=True)
test_data = utils.DataLoader(test_dataset, 1, shuffle=False, pin_memory=True)#(test_dataset, args.batch_size, shuffle=False, pin_memory=True
#LOAD MODEL
n_time_frames = test_predictors.shape[-1]
######################################################################################################################
model=SELD_Model(time_dim=n_time_frames, freq_dim=args.freq_dim, input_channels=args.input_channels, output_classes=args.output_classes,
domain=args.domain, domain_classifier=args.domain_classifier,
cnn_filters=args.cnn_filters, kernel_size_cnn_blocks=args.kernel_size_cnn_blocks, pool_size=args.pool_size, pool_time=args.pool_time,
D=args.D, dilation_mode=args.dilation_mode,G=args.G, U=args.U, kernel_size_dilated_conv=args.kernel_size_dilated_conv,
spatial_dropout_rate=args.spatial_dropout_rate,V=args.V, V_kernel_size=args.V_kernel_size,
fc_layers=args.fc_layers, fc_activations=args.fc_activations, fc_dropout=args.fc_dropout, dropout_perc=args.dropout_perc,
class_overlaps=args.class_overlaps,
use_bias_conv=args.use_bias_conv,use_bias_linear=args.use_bias_linear,batch_norm=args.batch_norm, parallel_ConvTC_block=args.parallel_ConvTC_block, parallel_magphase=args.parallel_magphase,
extra_name=args.model_extra_name, verbose=False)
architecture_dir='RESULTS/Task2/{}/'.format(args.architecture)
if len(os.path.dirname(architecture_dir)) > 0 and not os.path.exists(os.path.dirname(architecture_dir)):
os.makedirs(os.path.dirname(architecture_dir))
model_dir=architecture_dir+model.model_name+'/'
if len(os.path.dirname(model_dir)) > 0 and not os.path.exists(os.path.dirname(model_dir)):
os.makedirs(os.path.dirname(model_dir))
args.load_model=model_dir+'checkpoint'
unique_name=model_dir+model.model_name
'''if not args.wandb_id=='none':
wandb.init(project=args.wandb_project, entity=args.wandb_entity,resume='allow',id=args.wandb_id,name=model.model_name)############################################################################################ WANDB
else:
wandb.init(project=args.wandb_project,entity=args.wandb_entity,resume='allow',name=model.model_name)
config = wandb.config
wandb.watch(model)
wandb.config.update(args, allow_val_change=True)
wandb.config.ReceptiveField=model.receptive_field
wandb.config.n_ResBlocks=model.total_n_resblocks'''
print(dataset_string)
print(model.model_name)
summary(model, input_size=(args.batch_size,args.input_channels,args.freq_dim,n_time_frames)) ##################################################
if not args.architecture == 'seldnet_vanilla' and not args.architecture == 'seldnet_augmented':
print('\nReceptive Field: ',model.receptive_field,'\nNumber of ResBlocks: ', model.total_n_resblocks)
#######################################################################################################################
if args.use_cuda:
print("Moving model to gpu")
model = model.to(device)
#compute number of parameters
model_params = sum([np.prod(p.size()) for p in model.parameters()])
print ('Total paramters: ' + str(model_params))
'''
wandb.config.n_Parameters=model_params'''
#set up the loss functions
criterion_sed = nn.BCELoss()
criterion_doa = nn.MSELoss()
#set up optimizer
optimizer = Adam(params=model.parameters(), lr=args.lr)
################################################################### DYNAMIC LEARNING RATE
if args.use_lr_scheduler:
scheduler = StepLR(optimizer, step_size=args.lr_scheduler_step_size, gamma=args.lr_scheduler_gamma, verbose=True)
else:
scheduler=None
###################################################################
#set up training state dict that will also be saved into checkpoints
state = {"step" : 0,
"worse_epochs" : 0,
"epochs" : 0,
"best_loss" : np.Inf,
"best_epoch" : 0,
"best_test_epoch":0,
"torch_seed_state":torch.get_rng_state(),
"numpy_seed_state":np.random.get_state()
}
epoch =0
best_loss_checkpoint=np.inf
best_test_metric=1
#load model checkpoint if desired
if args.load_model is not None and os.path.isfile(args.load_model) :####################################### added "and os.path.isfile(args.load_model)"
print("Continuing training full model from checkpoint " + str(args.load_model))
state = load_model(model, optimizer, args.load_model, args.use_cuda,device,scheduler)
epoch=state["epochs"]#######################################################################
new_best=False
test_best_results=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
best_epoch_checkpoint = epoch
#TRAIN MODEL
print('TRAINING START')
train_loss_hist = []
val_loss_hist = []
while state["worse_epochs"] < args.patience or epoch<args.min_n_epochs:
epoch += 1
state["epochs"] += 1
print("Training epoch " + str(epoch) +' of '+model.model_name, ' with lr ', optimizer.param_groups[0]['lr'])
avg_time = 0.
model.train()
train_loss = 0.
with tqdm(total=len(tr_dataset) // args.batch_size) as pbar:
for example_num, (x, target) in enumerate(tr_data):
target = target.to(device)
#print(x.shape)
x = x.to(device)
t = time.time()
# Compute loss for each instrument/model
optimizer.zero_grad()
#print(x.shape)
#sed, doa = model(x)
#print(x.shape)
loss = seld_loss(x, target, model, criterion_sed, criterion_doa)
loss.backward()
train_loss += (1. / float(example_num + 1)) * (loss - train_loss)
optimizer.step()
state["step"] += 1
t = time.time() - t
avg_time += (1. / float(example_num + 1)) * (t - avg_time)
pbar.update(1)
#PASS VALIDATION DATA
val_loss = evaluate(model, device, criterion_sed, criterion_doa, val_data)
if args.use_lr_scheduler and optimizer.param_groups[0]['lr']>args.min_lr:
scheduler.step()######################################################################Dynamic learning rate
# EARLY STOPPING CHECK
#############################################################################
checkpoint_path = os.path.join(model_dir, "checkpoint")
checkpoint_best_model_path = os.path.join(model_dir, "checkpoint_best_model")
checkpoint_best_model_checkpoint_path = os.path.join(model_dir, "checkpoint_best_model_of_checkpoint")
#state["worse_epochs"] = 200
train_loss_hist.append(train_loss.cpu().detach().numpy())
val_loss_hist.append(val_loss.cpu().detach().numpy())
if val_loss >= state["best_loss"]:
state["worse_epochs"] += 1
else:
if new_best==True:
best_loss_checkpoint =state["best_loss"]
best_epoch_checkpoint = state["best_epoch"]
shutil.copyfile(checkpoint_best_model_path, checkpoint_best_model_checkpoint_path)
print("MODEL IMPROVED ON VALIDATION SET!")
state["worse_epochs"] = 0
state["best_loss"] = val_loss
state["best_epoch"] = epoch
state["best_checkpoint"] = checkpoint_best_model_path
new_best=True
# CHECKPOINT
print("Saving best model...")
save_model(model, optimizer, state, checkpoint_best_model_path,scheduler)
if val_loss < best_loss_checkpoint and (val_loss!=state["best_loss"] or best_loss_checkpoint==np.inf):
best_loss_checkpoint = val_loss
print("Saving best model checkpoint...")
save_model(model, optimizer, state, checkpoint_best_model_checkpoint_path,scheduler)
best_epoch_checkpoint = epoch
print("Saving model...")
save_model(model, optimizer, state, checkpoint_path,scheduler)
print("VALIDATION FINISHED: TRAIN_LOSS: {} VAL_LOSS: {}".format(str(train_loss.cpu().detach().numpy().round(4)), str(val_loss.cpu().detach().numpy().round(4))))
print("Best epoch at: {} Best loss: {}".format(state['best_epoch'],str(state['best_loss'].cpu().detach().numpy().round(4))))
plot_array=[epoch, train_loss.cpu().detach().numpy(), val_loss.cpu().detach().numpy()]
save_array_to_csv("{}_training_metrics.csv".format(unique_name), plot_array)###################################
'''wandb.log({"train loss": train_loss.cpu().detach().numpy()},step=epoch)#################################################### WANDB
wandb.log({"val loss":val_loss.cpu().detach().numpy()},step=epoch)
'''
#TEST############################################################################################################
if epoch%args.test_step==0:
if args.test_mode=='test_best':
if new_best:
print ('\n***************TEST BEST MODEL AT EPOCH {}****************'.format(state["best_epoch"]))
state = load_model(model, optimizer, checkpoint_best_model_path, args.use_cuda,device,scheduler)
test_best_results=evaluate_test(model,device, test_data,epoch=state['best_epoch'],max_loc_value=args.max_loc_value,num_frames=args.num_frames,spatial_threshold=args.spatial_threshold)
save_array_to_csv("{}_test_metrics.csv".format(unique_name), test_best_results)
else:
print ('\n***************TEST MODEL AT EPOCH {}****************'.format(best_epoch_checkpoint))
state = load_model(model, optimizer, checkpoint_best_model_checkpoint_path, args.use_cuda,device,scheduler)
test_best_results=evaluate_test(model,device, test_data,epoch=best_epoch_checkpoint,max_loc_value=args.max_loc_value,num_frames=args.num_frames,spatial_threshold=args.spatial_threshold)
save_array_to_csv("{}_test_metrics.csv".format(unique_name), test_best_results)
else:
print ('\n***************TEST MODEL AT EPOCH {}****************'.format(epoch))
test_best_results=evaluate_test(model,device, test_data,epoch=epoch,max_loc_value=args.max_loc_value,num_frames=args.num_frames,spatial_threshold=args.spatial_threshold)
save_array_to_csv("{}_test_metrics.csv".format(unique_name), test_best_results)
'''
wandb.log({"F-Score": test_best_results[1]},step=epoch)#################################################### WANDB
wandb.log({"ER-Score": test_best_results[2]},step=epoch)
wandb.log({"Precision": test_best_results[3]},step=epoch)
wandb.log({"Recall": test_best_results[4]},step=epoch)
wandb.log({"LR Localization Recall (DCASE21)": test_best_results[-1]},step=epoch)
wandb.log({"LE Localization Error (DCASE21)": test_best_results[-2]},step=epoch)
wandb.log({"F (DCASE21)": test_best_results[-3]},step=epoch)
wandb.log({"ER (DCASE21)": test_best_results[-4]},step=epoch)
wandb.log({"SELD Score (DCASE21)": test_best_results[-5]},step=epoch)
wandb.log({"Global SELD (F ER L3DAS21 - LE LR DCASE21)": test_best_results[-6]},step=epoch)
wandb.log({"LSD score": test_best_results[-7]},step=epoch)
wandb.log({"CSL score": test_best_results[-8]},step=epoch) '''
if test_best_results[10]<=best_test_metric: #if we get a lower (better) GlobalSELD
print("Saving BEST TEST model...")
best_test_metric=test_best_results[10]
if args.test_mode=='test_best':
if new_best:
state["best_test_epoch"]=state["best_epoch"]
else:
state["best_test_epoch"]=best_epoch_checkpoint
else:
state["best_test_epoch"]=epoch
save_model(model, optimizer, state, checkpoint_path+'_best_model_on_Test',scheduler)
if args.test_mode=='test_best':
state = load_model(model, optimizer, args.load_model, args.use_cuda,device,scheduler)
if new_best:
new_best=False
if epoch% args.checkpoint_step==0:
checkpoint_dir=model_dir+'checkpoint_epoch_{}/'.format(epoch)
if len(os.path.dirname(checkpoint_dir)) > 0 and not os.path.exists(os.path.dirname(checkpoint_dir)):
os.makedirs(os.path.dirname(checkpoint_dir))
print ('\n***************CHECKPOINT EPOCH {}****************'.format(epoch))
shutil.copyfile(checkpoint_best_model_path, checkpoint_dir+"checkpoint_best_epoch_{}".format(state["best_epoch"]))
shutil.copyfile(checkpoint_path, checkpoint_dir+"checkpoint_epoch_{}".format(epoch))
shutil.copyfile(checkpoint_path+'_best_model_on_Test', checkpoint_dir+"checkpoint_best_model_on_Test_epoch_{}".format(state["best_test_epoch"]))
shutil.copyfile(checkpoint_best_model_checkpoint_path, checkpoint_dir+"checkpoint_best_model_checkpoint_epoch_{}".format(best_epoch_checkpoint))
shutil.copyfile("{}_training_metrics.csv".format(unique_name), checkpoint_dir+model.model_name+"_training_metrics_at_epoch_{}.csv".format(epoch))
shutil.copyfile("{}_test_metrics.csv".format(unique_name), checkpoint_dir+model.model_name+"_test_metrics_at_epoch_{}.csv".format(epoch))
########################################################################################################################################################
#LOAD BEST MODEL AND COMPUTE LOSS FOR ALL SETS
print("TESTING")
# Load best model based on validation loss
state = load_model(model, None, checkpoint_path+'_best_model_on_Test', args.use_cuda,device,scheduler)
#compute loss on all set_output_size
train_loss = evaluate(model, device, criterion_sed, criterion_doa, tr_data)
val_loss = evaluate(model, device, criterion_sed, criterion_doa, val_data)
test_loss = evaluate(model, device, criterion_sed, criterion_doa, test_data)
#PRINT AND SAVE RESULTS
results = {'train_loss': train_loss.cpu().detach().numpy(),
'val_loss': val_loss.cpu().detach().numpy(),
'test_loss': test_loss.cpu().detach().numpy(),
'train_loss_hist': train_loss_hist,
'val_loss_hist': val_loss_hist}
print(model.model_name)
print ('RESULTS')
for i in results:
if 'hist' not in i:
print (i, results[i])
out_path = os.path.join(args.results_path, 'results_dict.json')
np.save(out_path, results)
print('*********** TEST BEST MODEL (epoch {}) ************'.format(state['best_test_epoch']))
test_best_results=evaluate_test(model,device, test_data,epoch=state['best_test_epoch'],max_loc_value=args.max_loc_value,num_frames=args.num_frames,spatial_threshold=args.spatial_threshold)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#saving/loading parameters
parser.add_argument('--results_path', type=str, default='RESULTS/Task2',
help='Folder to write results dicts into')
parser.add_argument('--checkpoint_dir', type=str, default='RESULTS/Task2',
help='Folder to write checkpoints into')
parser.add_argument('--load_model', type=str, default=None,#'RESULTS/Task2/checkpoint',
help='Reload a previously trained model (whole task model)')
#dataset parameters
parser.add_argument('--training_predictors_path', type=str,default='/var/datasets/L3DAS21/processed/task2_predictors_train.pkl')
parser.add_argument('--training_target_path', type=str,default='/var/datasets/L3DAS21/processed/task2_target_train.pkl')
parser.add_argument('--validation_predictors_path', type=str, default='/var/datasets/L3DAS21/processed/task2_predictors_validation.pkl')
parser.add_argument('--validation_target_path', type=str, default='/var/datasets/L3DAS21/processed/task2_target_validation.pkl')
parser.add_argument('--test_predictors_path', type=str, default='/var/datasets/L3DAS21/processed/task2_predictors_test.pkl')
parser.add_argument('--test_target_path', type=str, default='/var/datasets/L3DAS21/processed/task2_target_test.pkl')
#training parameters
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--use_cuda', type=str, default='True')
parser.add_argument('--early_stopping', type=str, default='True')
parser.add_argument('--fixed_seed', type=str, default='True')
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--batch_size', type=int, default=1,
help="Batch size")
parser.add_argument('--sr', type=int, default=32000,
help="Sampling rate")
parser.add_argument('--patience', type=int, default=250,
help="Patience for early stopping on validation set")
#model parameters
#the following parameters produce a prediction for each 100-msecs frame
parser.add_argument('--architecture', type=str, default='DualQSELD-TCN',
help="model's architecture, can be seldnet_vanilla or seldnet_augmented")
parser.add_argument('--input_channels', type=int, default=4,
help="4/8 for 1/2 mics, multiply x2 if using also phase information")
parser.add_argument('--n_mics', type=int, default=1)
parser.add_argument('--phase', type=str, default='False')
parser.add_argument('--class_overlaps', type=int, default=3,
help= 'max number of simultaneous sounds of the same class')
parser.add_argument('--time_dim', type=int, default=4800)
parser.add_argument('--freq_dim', type=int, default=256)
parser.add_argument('--output_classes', type=int, default=14)
parser.add_argument('--pool_size', type=str, default='[[8,2],[8,2],[2,2],[1,1]]')
parser.add_argument('--cnn_filters', type=str, default='[64,64,64]')
parser.add_argument('--pool_time', type=str, default='True')
parser.add_argument('--dropout_perc', type=float, default=0.3)
parser.add_argument('--D', type=str, default='[10]')
parser.add_argument('--G', type=int, default=128)
parser.add_argument('--U', type=int, default=128)
parser.add_argument('--V', type=str, default='[128,128]')
parser.add_argument('--spatial_dropout_rate', type=float, default=0.5)
parser.add_argument('--batch_norm', type=str, default='BN')
parser.add_argument('--dilation_mode', type=str, default='fibonacci')
parser.add_argument('--model_extra_name', type=str, default='')
parser.add_argument('--test_mode', type=str, default='test_best')
parser.add_argument('--use_lr_scheduler', type=str, default='True')
parser.add_argument('--lr_scheduler_step_size', type=int, default=150)
parser.add_argument('--lr_scheduler_gamma', type=float, default=0.5)
parser.add_argument('--min_lr', type=float, default=0.000005)
parser.add_argument('--dataset_normalization', type=str, default='True')
parser.add_argument('--kernel_size_cnn_blocks', type=int, default=3)
parser.add_argument('--kernel_size_dilated_conv', type=int, default=3)
parser.add_argument('--use_tcn', type=str, default='True')
parser.add_argument('--use_bias_conv', type=str, default='True')
parser.add_argument('--use_bias_linear', type=str, default='True')
parser.add_argument('--verbose', type=str, default='False')
parser.add_argument('--sed_loss_weight', type=float, default=1.)
parser.add_argument('--doa_loss_weight', type=float, default=5.)
parser.add_argument('--domain_classifier', type=str, default='same')
parser.add_argument('--domain', type=str, default='DQ')
parser.add_argument('--fc_activations', type=str, default='Linear')
parser.add_argument('--fc_dropout', type=str, default='Last')
parser.add_argument('--fc_layers', type=str, default='[128]')
parser.add_argument('--V_kernel_size', type=int, default=3)
parser.add_argument('--use_time_distributed', type=str, default='False')
parser.add_argument('--parallel_ConvTC_block', type=str, default='False')
'''parser.add_argument('--wandb_id', type=str, default='none')
parser.add_argument('--wandb_project', type=str, default='')
parser.add_argument('--wandb_entity', type=str, default='')'''
############## TEST ###################
parser.add_argument('--max_loc_value', type=float, default=2.,
help='max value of target loc labels (to rescale model\'s output since the models has tanh in the output loc layer)')
parser.add_argument('--num_frames', type=int, default=600,
help='total number of time frames in the predicted seld matrices. (600 for 1-minute sounds with 100msecs frames)')
parser.add_argument('--spatial_threshold', type=float, default=2.,
help='max cartesian distance withn consider a true positive')
########################################
######################### CHECKPOINT ####################################################
parser.add_argument('--checkpoint_step', type=int, default=100,
help="Save and test models every checkpoint_step epochs")
parser.add_argument('--test_step', type=int, default=10,
help="Save and test models every checkpoint_step epochs")
parser.add_argument('--min_n_epochs', type=int, default=1000,
help="Save and test models every checkpoint_step epochs")
parser.add_argument('--Dcase21_metrics_DOA_threshold', type=int, default=20)
parser.add_argument('--parallel_magphase', type=str, default='False')
parser.add_argument('--TextArgs', type=str, default='config/Test.txt', help='Path to text with training settings')#'config/PHC-SELD-TCN-S1_BN.txt'
parse_list = readFile(parser.parse_args().TextArgs)
args = parser.parse_args(parse_list)
#eval string bools and lists
args.use_cuda = eval(args.use_cuda)
args.early_stopping = eval(args.early_stopping)
args.fixed_seed = eval(args.fixed_seed)
args.pool_size= eval(args.pool_size)
args.cnn_filters = eval(args.cnn_filters)
args.verbose = eval(args.verbose)
args.D=eval(args.D)
args.V=eval(args.V)
args.use_lr_scheduler=eval(args.use_lr_scheduler)
#args.dataset_normalization=eval(args.dataset_normalization)
args.phase=eval(args.phase)
args.use_tcn=eval(args.use_tcn)
args.use_bias_conv=eval(args.use_bias_conv)
args.use_bias_linear=eval(args.use_bias_linear)
args.fc_layers = eval(args.fc_layers)
args.parallel_magphase = eval(args.parallel_magphase)
main(args)