-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.cpp
261 lines (213 loc) · 7.17 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
////////////////////////////////////////////////////////////////////////////////
// Distributed under the Boost Software License, Version 1.0. //
// (See accompanying file LICENSE or copy at //
// https://www.boost.org/LICENSE_1_0.txt) //
////////////////////////////////////////////////////////////////////////////////
#include <chrono>
#define _USE_MATH_DEFINES
#include <cmath>
#include <iostream>
#include <random>
#include <vector>
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include <stb_image_write.h>
#include "core/colour.h"
#include "core/context.h"
#include "core/exception.h"
#include "core/start.h"
#include "core/vector3.h"
#include "jobs/job.h"
#include "jobs/job_system_manager.h"
#include "log/log.h"
/**
* Simple ray class.
*/
struct Ray
{
Ray(const iris::Vector3 &origin, const iris::Vector3 &direction)
: origin(origin)
, direction(direction)
{
}
iris::Vector3 origin;
iris::Vector3 direction;
};
/**
* Simple sphere class.
*/
struct Sphere
{
Sphere(const iris::Vector3 &origin, float radius, const iris::Colour &colour)
: origin(origin)
, radius(radius)
, colour(colour)
{
}
std::tuple<float, iris::Vector3, iris::Vector3> intersects(const Ray &ray) const
{
auto L = origin - ray.origin;
auto tca = L.dot(ray.direction);
auto d2 = L.dot(L) - tca * tca;
if (d2 > radius * radius)
{
return {std::numeric_limits<float>::max(), {}, {}};
}
auto thc = sqrtf(radius * radius - d2);
auto t0 = tca - thc;
auto t1 = tca + thc;
if (t0 < 0)
{
t0 = t1;
}
if (t0 < 0)
{
return {std::numeric_limits<float>::max(), {}, {}};
}
auto q = ray.origin + (ray.direction * t0);
return {t0, q, iris::Vector3::normalise(q - origin)};
}
iris::Vector3 origin;
float radius;
iris::Colour colour;
bool is_metal = false;
float rougness = 0.0f;
};
// helpful globals
std::random_device rd;
std::mt19937 generator(rd());
static std::vector<Sphere> scene;
iris::Vector3 random_unit_vector()
{
std::uniform_real_distribution<float> dist1(0.0f, 1.0f);
float z = dist1(generator) * 2.0f - 1.0f;
float a = dist1(generator) * 2.0f * M_PI;
float r = sqrtf(1.0f - z * z);
float x = r * cosf(a);
float y = r * sinf(a);
return {x, y, z};
}
iris::Vector3 random_in_unit_sphere()
{
std::uniform_real_distribution<float> dist1(0.0f, 1.0f);
iris::Vector3 p;
do
{
p = iris::Vector3{dist1(generator), dist1(generator), dist1(generator)} * 2.0 - iris::Vector3(1, 1, 1);
} while (p.dot(p) >= 1.0);
return p;
}
/**
* Recursively trace a ray through a scene, to a max depth.
*/
iris::Colour trace(const Ray &ray, int depth)
{
const Sphere *hit = nullptr;
auto distance = std::numeric_limits<float>::max();
iris::Vector3 point;
iris::Vector3 normal;
for (const auto &shape : scene)
{
const auto &[d, p, n] = shape.intersects(ray);
if (d < distance)
{
distance = d;
point = p;
normal = n;
hit = &shape;
}
}
// return sky colour if we don't hit anything
if (hit == nullptr)
{
return {0.9f, 0.9f, 0.9f};
}
const auto emittance = hit->colour;
// return black if we hit max depth
if (depth > 4)
{
return {0.0f, 0.0f, 0.0f};
}
Ray newRay{{}, {}};
// create another ray to trace, based on material
if (hit->is_metal)
{
auto reflect = ray.direction - normal * ray.direction.dot(normal) * 2;
newRay = {point, iris::Vector3::normalise(reflect + random_in_unit_sphere() * hit->rougness)};
newRay.origin += newRay.direction * 0.01f;
}
else
{
auto target = point + normal + random_unit_vector();
newRay = {point, iris::Vector3::normalise(target - point)};
newRay.origin += newRay.direction * 0.001f;
}
// trace next ray and mix in its colour
return emittance * trace(newRay, depth + 1);
}
void go(iris::Context context)
{
iris::Logger::instance().ignore_tag("js");
scene.emplace_back(iris::Vector3{150.0f, 0.0f, -600.0f}, 100.0f, iris::Colour{0.58f, 0.49f, 0.67f});
scene.emplace_back(iris::Vector3{-150.0f, 0.0f, -600.0f}, 100.0f, iris::Colour{0.99f, 0.78f, 0.84f});
scene.emplace_back(iris::Vector3{00.0f, 0.0f, -750.0f}, 100.0f, iris::Colour{1.0f, 0.87f, 0.82f});
scene.emplace_back(iris::Vector3{0.0f, -10100.0f, -600.0f}, 10000.0f, iris::Colour{1.0f, 1.0f, 1.0f});
scene[2].is_metal = true;
scene[2].rougness = 0.9;
static const auto width = 600;
static const auto height = 400;
std::vector<std::uint8_t> pixels(width * height * 3);
std::size_t counter = 0u;
const float fov = M_PI / 3.;
std::uniform_real_distribution<float> dist1(-0.5f, 0.5f);
std::vector<iris::Job> jobs;
LOG_INFO("job_system", "starting");
auto start = std::chrono::high_resolution_clock::now();
for (std::size_t j = 0; j < height; j++)
{
for (std::size_t i = 0; i < width; i++)
{
jobs.emplace_back(
[i, j, fov, counter, &pixels, &dist1]()
{
const auto dir_x = (i + 0.5f) - width / 2.0f;
const auto dir_y = -(j + 0.5f) + height / 2.0f;
const auto dir_z = -height / (2.0f * tan(fov / 2.0f));
iris::Colour pixel;
auto samples = 100;
for (int i = 0; i < samples; i++)
{
pixel += trace(
{{0, 0, 0},
iris::Vector3::normalise({dir_x + dist1(generator), dir_y + dist1(generator), dir_z})},
1);
}
pixel *= (1.0 / (float)samples);
// clamp colours
pixels[counter + 0u] =
static_cast<std::uint8_t>((255.0f * std::max(0.0f, std::min(1.0f, (float)pixel.r))));
pixels[counter + 1u] =
static_cast<std::uint8_t>((255.0f * std::max(0.0f, std::min(1.0f, (float)pixel.g))));
pixels[counter + 2u] =
static_cast<std::uint8_t>((255.0f * std::max(0.0f, std::min(1.0f, (float)pixel.b))));
});
counter += 3u;
}
}
do
{
const auto count = std::min((std::size_t)900ul, jobs.size());
std::vector<iris::Job> batch(std::cend(jobs) - count, std::cend(jobs));
jobs.erase(std::cend(jobs) - count, std::cend(jobs));
context.jobs_manager().wait(batch);
} while (!jobs.empty());
auto end = std::chrono::high_resolution_clock::now();
LOG_INFO(
"job_sample", "render time: {}ms", std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count());
stbi_write_png("render.png", width, height, 3, pixels.data(), 3 * width);
LOG_INFO("job_sample", "done");
}
int main(int argc, char **argv)
{
iris::start(argc, argv, go);
return 0;
}