-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
204 lines (202 loc) · 12.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="description" content="Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics">
<meta name="author" content="Minchen Li">
<title>IPC</title>
<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
<style>
p {font:10pt Arial}
.heading {font-family: 'Open Sans', serif; font-size: 20pt}
.subheading {font-family: 'Open Sans', serif; font-size: 11pt}
img {-webkit-box-shadow: 1px 1px 3px 3px rgba(0, 0, 0, 0.2);
box-shadow: 1px 1px 3px 3px rgba(0, 0, 0, 0.2); -webkit-border-radius: 6px;
border-radius: 6px;}
.main {width:1000px; background-color:white; margin-top: 0px; margin-left: auto; margin-right:auto; -webkit-border-radius: 10px;
border-radius: 10px;}
.regularHeader {font:16pt Playfair Display; margin-top:20px}
td {padding-top: 5px; padding-bottom: 5px;}
.text {font-family: 'Open Sans', sans-serif; font-size: 11pt; text-align:justify; margin-left:20px; margin-right:20px}
a {color:black; text-decoration:none}
a:hover {color:green; text-decoration:underline}
</style>
<script src="../includeHTML.js" ></script>
</head>
<body bgcolor="#dedede">
<div class="main">
<div style="margin: 0pt 15pt 25pt 15pt; padding-top:10px">
<div class="heading" style="text-align:center">Incremental Potential Contact:<br/>Intersection- and Inversion-free Large Deformation Dynamics</div>
<br />
<div class="subheading" style="margin-top:-8pt;text-align:center;font-size:13pt">
<a href="http://www.seas.upenn.edu/~minchenl/" target="_blank">Minchen Li</a><sup>1,2</sup>,
<a href="https://zferg.us" target="_blank">Zachary Ferguson</a><sup>3</sup>,
<a href="http://web.uvic.ca/~teseo/" target="_blank">Teseo Schneider</a><sup>3</sup>,
<a href="http://langlo.is/" target="_blank">Timothy Langlois</a><sup>2</sup>,
<a href="https://cims.nyu.edu/gcl/denis.html" target="_blank">Denis Zorin</a><sup>3</sup>,
<a href="https://cims.nyu.edu/gcl/daniele.html" target="_blank">Daniele Panozzo</a><sup>3</sup>,
<br />
<a href="https://www.seas.upenn.edu/~cffjiang/" target="_blank">Chenfanfu Jiang</a><sup>1</sup>,
<a href="http://dannykaufman.io/" target="_blank">Danny M. Kaufman</a><sup>2</sup>
<br />
<div style="margin-top:6pt;"><sup>1</sup>University of Pennsylvania, <sup>2</sup>Adobe Research, <sup>3</sup>New York University</text></div>
<div class="subheading" style="margin-top:8pt;"><span style="font-style: italic">ACM Transactions on Graphics (SIGGRAPH), 2020</span></div>
</div>
<div align="center" style="clear:none; margin-top:15px">
<img src="file/IPC-teaser.jpg" style="padding:3pt; width:99%">
<div class="text" style="text-align:left; font-size:10pt; margin-top:10pt">
<p class="text">
<b>Squeeze out:</b> Incremental Potential Contact (IPC) enables high-rate time stepping, here with h = 0.01s, of extreme nonlinear elastodynamics with
contact that is intersection- and inversion-free at all time steps, irrespective of the degree of compression and contact. Here a plate compresses and then
forces a collection of complex soft elastic FE models (181K tetrahedra in total, with a neo-Hookean material) through a thin, codimensional obstacle tube. The
models are then compressed entirely together forming a tight mush to fit through the gap and then once through they cleanly separate into a stable pile.
</p>
</div>
</div>
<div class="regularHeader" style="margin-bottom:15px;text-align:left;">Paper</div>
<div class="text">
<p class="text">
<b><a href="file/IPC-paper-fullRes.pdf" target="_blank"> Paper (PDF) </a></b>
<b><a href="file/IPC-paper-350ppi.pdf" target="_blank"> Low res (PDF) </a></b>
</p>
</div>
<div class="regularHeader" style="text-align:left;">Abstract</div>
<div class="text" align="center">
<p class="text">
Contacts weave through every aspect of our physical world, from daily
household chores to acts of nature. Modeling and predictive computation of
these phenomena for solid mechanics is important to every discipline concerned with the motion of mechanical systems, including engineering and
animation. Nevertheless, efficiently time-stepping accurate and consistent
simulations of real-world contacting elastica remains an outstanding computational challenge. To model the complex interaction of deforming solids
in contact we propose Incremental Potential Contact (IPC) – a new model
and algorithm for variationally solving implicitly time-stepped nonlinear
elastodynamics. IPC maintains an intersection- and inversion-free trajectory
regardless of material parameters, time step sizes, impact velocities, severity
of deformation, or boundary conditions enforced.
</p>
<p class="text">
Constructed with a custom nonlinear solver, IPC enables efficient resolution of time-stepping problems with separate, user-exposed accuracy
tolerances that allow independent specification of the physical accuracy of
the dynamics and the geometric accuracy of surface-to-surface conformation.
This enables users to decouple, as needed per application, desired accuracies
for a simulation’s dynamics and geometry.
</p>
<p class="text">
The resulting time stepper solves contact problems that are intersectionfree (and thus robust), inversion-free, efficient (at speeds comparable to or
faster than available methods that lack both convergence and feasibility),
and accurate (solved to user-specified accuracies). To our knowledge this
is the first implicit time-stepping method, across both the engineering and
graphics literature that can consistently enforce these guarantees as we vary
simulation parameters.
</p>
<p class="text">
In an extensive comparison of available simulation methods, research
libraries and commercial codes we confirm that available engineering and
computer graphics methods, while each succeeding admirably in custom-tuned regimes, often fail with instabilities, egregious constraint violations
and/or inaccurate and implausible solutions, as we vary input materials,
contact numbers and time step. We also exercise IPC across a wide range
of existing and new benchmark tests and demonstrate its accurate solution
over a broad sweep of reasonable time-step sizes and beyond (up to h=2s)
across challenging large-deformation, large-contact stress-test scenarios
with meshes composed of up to 2.3M tetrahedra and processing up to 498K
contacts per time step. For applications requiring high-accuracy we demonstrate tight convergence on all measures. While, for applications requiring
lower accuracies, e.g. animation, we confirm IPC can ensure feasibility and
plausibility even when specified tolerances are lowered for efficiency.
</p>
</div>
<div class="regularHeader" style="margin-bottom:15px;text-align:left;">Video</div>
<div class="text" align="center">
<p class="text">
<b><a href="https://www.bilibili.com/video/BV1964y1275C/" target="_blank">Main video (MP4, 126 MB)</a></b>
<br/> <br/>
<iframe width="560" height="315" src="https://www.youtube.com/embed/y96jk-eUCgI" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen style="-webkit-box-shadow: 1px 1px 3px 3px rgba(0, 0, 0, 0.2)"></iframe>
<br/> <br/> <br/>
<b><a href="file/IPC-supplemental-video.mp4" target="_blank">Supplemental Video (MP4, 64.7 MB)</a></b>
<br/> <br/>
<iframe width="560" height="315" src="https://www.youtube.com/embed/sX5qQEDvHVU" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen style="-webkit-box-shadow: 1px 1px 3px 3px rgba(0, 0, 0, 0.2)"></iframe>
</p>
</div>
<div class="regularHeader" style="margin-bottom:15px;text-align:left;">Source Code and Data</div>
<div class="text">
<p class="text">
<b><a href="https://github.com/ipc-sim/IPC" target="_blank">Codebase</a></b>
<b><a href="https://github.com/ipc-sim/ipc-toolkit" target="_blank">Toolkit</a></b>
</p>
</div>
<div class="regularHeader" style="margin-bottom:15px;text-align:left;">BibTex</div>
<div class="text">
<p class="text">
@article{Li2020IPC,<br/>
author = {Minchen Li and Zachary Ferguson and Teseo Schneider and Timothy Langlois and<br />
Denis Zorin and Daniele Panozzo and Chenfanfu Jiang and Danny M. Kaufman},<br/>
title = {Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics},<br/>
journal = {ACM Trans. Graph. (SIGGRAPH)},<br/>
year = {2020},<br/>
volume = {39},<br/>
number = {4},<br/>
articleno = {49}<br/>
}
</p>
</div>
<div class="regularHeader" style="margin-bottom:15px;text-align:left;">Supplemental Documents</div>
<div class="text">
<p class="text">
<b><a href="file/IPC-supplement-A-technical.pdf" target="_blank">Supplement A: Technical Details (PDF) </a></b> <br/>
<b><a href="file/IPC-supplement-B-comparisons.pdf" target="_blank">Supplement B: Comparison Details (PDF) </a></b><br/>
<b><a href="file/IPC-supplement-C-statistics.pdf" target="_blank">Supplement C: Statistics (PDF) </a></b><br/>
</p>
</div>
<div class="regularHeader" style="margin-bottom:15px;text-align:left;">Results</div>
<div align="center" style="clear:none; margin-top:15px">
<img src="file/IPC-golf.jpg" style="padding:3pt; width:89%">
<div class="text" style="text-align:left; font-size:10pt; margin-top:10pt">
<p class="text">
<b>High-speed impact test:</b> Top: we show key frames from a highspeed
video capture of a foam practice ball fired at a fixed plate. Matching
reported material properties (0.04m diameter, E = 107Pa, ν = 0.45, ρ =
1150kg/m3) and firing speed (v0 = 67m/s), we apply IPC to simulate the
set-up with Newmark time stepping at h = 2e−5s to capture the highfrequency
behaviors. Middle and bottom: IPC-simulated frames at times
corresponding to the video frames showing respectively, visualization of the
simulated velocity magnitudes (middle) and geometry (bottom).
</p>
</div>
</div>
<br />
<div align="center" style="clear:none; margin-top:15px">
<img src="file/IPC-squishyBall.jpg" style="padding:3pt; width:89%">
<div class="text" style="text-align:left; font-size:10pt; margin-top:10pt">
<p class="text">
<b>Squishy ball scaling test:</b> Simulated by IPC, an elastic squishy ball toy
model (688K nodes, 2.3M tets) is thrown at a glass wall. The left three frames
show side views before, at, and after the moment of maximal compression
during impact. The right-most frame then shows the view behind the glass
during the moment of maximal compression, highlighting how all of the
toy’s intricately intertwined tendrils remain intersection free.
</p>
</div>
</div>
<br />
<div align="center" style="clear:none; margin-top:15px">
<img src="file/IPC-codimRoller.jpg" style="padding:3pt; width:89%">
<div class="text" style="text-align:left; font-size:10pt; margin-top:10pt">
<p class="text">
<b>Codimensional collision tests:</b> Here we simulate collisions with codimensional moving obstacles using only the mesh edge segments (left) or even just the mesh vertices (right) for the rotating roller. For these extremely
challenging tests IPC continues robust simulation exhibiting tight compliant
shapes in contact regions pressed by the sharp obstacles.
</p>
</div>
</div>
<div id="related" class="regularHeader" style="margin-bottom:15px;text-align:left;">Related Projects</div>
<div class="text">
<div w3-include-html="../related.html"></div>
</div>
<br>
</div>
</div>
<script>
includeHTML();
</script>
</body>
</html>