-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_dMVMT.py
449 lines (369 loc) · 15.6 KB
/
train_dMVMT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import random
from sklearn.metrics import (
accuracy_score,
precision_score,
recall_score,
f1_score,
)
from torch.utils.data import DataLoader
import torch.autograd
import torch
import os
from torch import nn
import numpy as np
import argparse
from tqdm import tqdm
from omegaconf import OmegaConf
from utils.results import *
from utils.data_loader_shrec22 import Dataset_shrec22
from model.OO_dMVMT import dMVMT
from fairseq.optim.adafactor import Adafactor
import warnings
warnings.filterwarnings("ignore")
def train(
model: torch.nn.Module,
exp: str,
W: int,
normalize: bool = True,
n_epochs: int = 100,
dataset_step: int = 1,
do_gs_ge: bool = True,
do_gs_ge_onOff: bool = True,
do_sdn: bool = True,
do_onOff_skip: bool = False,
save_metrics: bool = True,
calc_m: bool = True,
device: torch.device='cpu'
):
optimizer = Adafactor(model.parameters())
scheduler = None
dataset = Dataset_shrec22(
dataset_train_dir,
W,
step=dataset_step,
normalize=normalize,
calc_m=calc_m,
)
data_loader = DataLoader(
dataset,
batch_size=train_batch_sz,
shuffle=True,
num_workers=8,
pin_memory=True,
)
valid_dataset = Dataset_shrec22(
dataset_test_dir,
W,
step=dataset_step,
normalize=normalize,
calc_m=calc_m,
)
vald_loader = DataLoader(
valid_dataset,
batch_size=test_batch_sz,
shuffle=False,
num_workers=8,
pin_memory=True,
)
print(f">>> EXPERIMENT: {exp}")
print(">>> Training dataset length: {:d}".format(dataset.__len__()))
print(">>> Validation dataset length: {:d}".format(valid_dataset.__len__()))
save_folder_path = os.path.join("output", exp)
os.makedirs(save_folder_path, exist_ok=True)
criterion = nn.CrossEntropyLoss()
best_test_accuracy = 0.0
best_test_f1 = 0.0
loss_train = []
loss_val = []
val_accuracy = []
N = 1 + (1 if do_sdn else 0) + (2 if do_gs_ge else 0) # numero di task
for epoch in range(n_epochs):
train_accuracy = []
test_accuracy = []
train_all_preds = []
train_all_gt = []
test_all_preds = []
test_all_gt = []
test_all_sdn_preds = []
test_all_sdn_gt = []
train_all_sdn_preds = []
train_all_sdn_gt = []
train_all_gs_pred = []
train_all_gs_gt = []
train_all_ge_pred = []
train_all_ge_gt = []
test_all_gs_pred = []
test_all_gs_gt = []
test_all_ge_pred = []
test_all_ge_gt = []
running_loss = 0.0
running_test_loss = 0.0
model.train()
for cnt, d in enumerate(
tqdm(data_loader, desc="Train Epoch " + str(epoch))
):
batch=d['P'].to(device, dtype=torch.float).permute(0, 1, 3, 2)
label_sdn = d['Label_SDN'].to(device)
label = d['Label'].to(device)
M = d['M']
if isinstance(M, list):
M = None
else:
M = M.to(device)
gesture_start = d['Gesture_start'].float().to(device)
gesture_end = d['Gesture_end'].float().to(device)
is_gs_valid = d['Is_GS_valid'].to(device)
is_ge_valid= d['Is_GE_valid'].to(device)
optimizer.zero_grad()
output = model(batch, M)
sdn_out, pred, gs_ge = output
gs, ge = gs_ge
classification_loss = criterion(pred, label)
sdn_loss = torch.nn.functional.cross_entropy(sdn_out, label_sdn)
# use only classifiers, but skip windows that are not gs/ge
if do_gs_ge and do_onOff_skip:
pred = pred[is_gs_valid | is_ge_valid]
label = label[is_gs_valid | is_ge_valid]
sdn_out = sdn_out[is_gs_valid | is_ge_valid]
label_sdn = label_sdn[is_gs_valid | is_ge_valid]
if len(pred) == 0:
continue
loss = criterion(pred, label)
sdn_loss = torch.nn.functional.cross_entropy(sdn_out, label_sdn)
else:
loss = classification_loss
if do_gs_ge:
if do_gs_ge_onOff: # default behaviour
gs_val: torch.Tensor = gs[is_gs_valid]
ge_val: torch.Tensor = ge[is_ge_valid]
gesture_start_valid = gesture_start[is_gs_valid]
gesture_end_valid = gesture_end[is_ge_valid]
if is_gs_valid.any() and gs_val.numel() > 0:
gs_loss = torch.nn.functional.mse_loss(gs_val, gesture_start_valid).float()
loss = loss + gs_loss
if is_ge_valid.any() and ge_val.numel() > 0:
ge_loss = torch.nn.functional.mse_loss(ge_val, gesture_end_valid).float()
loss = loss + ge_loss
else:
gs_loss = torch.nn.functional.mse_loss(gs, gesture_start).float()
ge_loss = torch.nn.functional.mse_loss(ge, gesture_end).float()
loss = loss + gs_loss + ge_loss
if do_sdn:
loss = loss + sdn_loss
loss.backward()
running_loss += loss.item()
optimizer.step()
train_all_preds.append(pred.detach().cpu())
train_all_gt.append(label.detach().cpu())
train_all_sdn_preds.append(sdn_out.detach().cpu())
train_all_sdn_gt.append(label_sdn.detach().cpu())
train_all_gs_pred.append(gs.detach().cpu())
train_all_gs_gt.append(gesture_start.detach().cpu())
train_all_ge_pred.append(ge.detach().cpu())
train_all_ge_gt.append(gesture_end.detach().cpu())
loss_train.append(running_loss / (cnt + 1))
model.eval()
with torch.no_grad():
for iii, d in enumerate(
tqdm(vald_loader, desc="Test Epoch " + str(epoch))
):
batch=d['P'].to(device, dtype=torch.float).permute(0, 1, 3, 2)
label_sdn = d['Label_SDN'].to(device)
label = d['Label'].to(device)
M = d['M']
if isinstance(M, list):
M = None
else:
M = M.to(device)
gesture_start = d['Gesture_start'].float().to(device)
gesture_end = d['Gesture_end'].float().to(device)
is_gs_valid = d['Is_GS_valid'].to(device)
is_ge_valid= d['Is_GE_valid'].to(device)
output = model(batch, M)
sdn_out, pred, gs_ge = output
gs, ge = gs_ge
classification_loss = criterion(pred, label)
sdn_loss = torch.nn.functional.cross_entropy(sdn_out, label_sdn)
loss = classification_loss
if do_gs_ge:
if do_gs_ge_onOff:
gs_val: torch.Tensor = gs[is_gs_valid]
ge_val: torch.Tensor = ge[is_ge_valid]
gesture_start_valid = gesture_start[is_gs_valid]
gesture_end_valid = gesture_end[is_ge_valid]
if is_gs_valid.any() and gs_val.numel() > 0:
gs_loss = torch.nn.functional.mse_loss(
gs_val, gesture_start_valid
).float()
loss = loss + gs_loss
if is_ge_valid.any() and ge_val.numel() > 0:
ge_loss = torch.nn.functional.mse_loss(
ge_val, gesture_end_valid
).float()
loss = loss + ge_loss
else:
gs_loss = torch.nn.functional.mse_loss(
gs, gesture_start
).float()
ge_loss = torch.nn.functional.mse_loss(ge, gesture_end).float()
loss = loss + gs_loss + ge_loss
if do_sdn:
loss = loss + sdn_loss
running_test_loss += loss.item()
test_all_preds.append(pred.detach().cpu())
test_all_gt.append(label.detach().cpu())
test_all_sdn_preds.append(sdn_out.detach().cpu())
test_all_sdn_gt.append(label_sdn.detach().cpu())
test_all_gs_pred.append(gs.detach().cpu())
test_all_gs_gt.append(gesture_start.detach().cpu())
test_all_ge_pred.append(ge.detach().cpu())
test_all_ge_gt.append(gesture_end.detach().cpu())
loss_val.append(running_test_loss / (iii +1))
train_all_preds = torch.cat(train_all_preds, dim=0).argmax(1).numpy()
train_all_gt = torch.cat(train_all_gt, dim=0).numpy()
test_all_preds = torch.cat(test_all_preds, dim=0).argmax(1).numpy()
test_all_gt = torch.cat(test_all_gt, dim=0).numpy()
train_all_sdn_preds = torch.cat(train_all_sdn_preds, dim=0).argmax(1).numpy()
train_all_sdn_gt = torch.cat(train_all_sdn_gt, dim=0).numpy()
test_all_sdn_preds = torch.cat(test_all_sdn_preds, dim=0).argmax(1).numpy()
test_all_sdn_gt = torch.cat(test_all_sdn_gt, dim=0).numpy()
train_all_gs_pred = torch.cat(train_all_gs_pred, dim=0)
train_all_gs_gt = torch.cat(train_all_gs_gt, dim=0)
train_all_ge_pred = torch.cat(train_all_ge_pred, dim=0)
train_all_ge_gt = torch.cat(train_all_ge_gt, dim=0)
train_gs_error = torch.nn.functional.mse_loss(
train_all_gs_pred, train_all_gs_gt
).item()
train_ge_error = torch.nn.functional.mse_loss(
train_all_ge_pred, train_all_ge_gt
).item()
test_all_gs_pred = torch.cat(test_all_gs_pred)
test_all_gs_gt = torch.cat(test_all_gs_gt)
test_all_ge_pred = torch.cat(test_all_ge_pred)
test_all_ge_gt = torch.cat(test_all_ge_gt)
test_gs_error = torch.nn.functional.mse_loss(
test_all_gs_pred, test_all_gs_gt
).item()
test_ge_error = torch.nn.functional.mse_loss(
test_all_ge_pred, test_all_ge_gt
).item()
train_accuracy = accuracy_score(train_all_gt, train_all_preds)
test_accuracy = accuracy_score(test_all_gt, test_all_preds)
test_precision = precision_score(
test_all_gt, test_all_preds, average="weighted"
)
test_recall = recall_score(test_all_gt, test_all_preds, average="weighted")
test_f1 = f1_score(test_all_gt, test_all_preds, average="weighted")
train_sdn_accuracy = accuracy_score(train_all_sdn_gt, train_all_sdn_preds)
test_sdn_accuracy = accuracy_score(test_all_sdn_gt, test_all_sdn_preds)
val_accuracy.append(test_accuracy)
print("Train accuracy: ", train_accuracy)
print("Validation accuracy: ", test_accuracy)
print("Validation F1: ", test_f1)
print("")
print("Train SDN accuracy: ", train_sdn_accuracy)
print("Test SDN accuracy: ", test_sdn_accuracy)
print("Train Gesture Start error: ", train_gs_error)
print("Train Gesture End error: ", train_ge_error)
print("Test Gesture Start error: ", test_gs_error)
print("Test Gesture End error: ", test_ge_error)
print("LR: ", optimizer.param_groups[0]["lr"])
print("Loss: ", running_loss / (cnt + 1))
print("")
if scheduler is not None:
scheduler.step()
if save_metrics:
np.save(os.path.join(save_folder_path, "loss_train"), np.asarray(loss_train))
np.save(os.path.join(save_folder_path, "loss_test"), np.asarray(loss_val))
np.save(os.path.join(save_folder_path, "val_accuracy"), np.asarray(val_accuracy))
if test_accuracy > best_test_accuracy:
best_test_accuracy = test_accuracy
print("-- Saving best model --\n")
save_folder_path = os.path.join("output", exp)
os.makedirs(save_folder_path, exist_ok=True)
torch.save(
model.state_dict(),
os.path.join(save_folder_path, "best_classifier_model.pth"),
)
train_cm = print_confusion_matrix(
train_all_gt,
train_all_preds,
os.path.join(save_folder_path, "train_ConfMatrix.jpg"),
)
test_cm = print_confusion_matrix(
test_all_gt,
test_all_preds,
os.path.join(save_folder_path, "test_ConfMatrix.jpg"),
)
if save_metrics:
np.save(os.path.join(save_folder_path, "class_test_ConfMatrix"), test_cm)
np.save(os.path.join(save_folder_path, "class_train_ConfMatrix"), train_cm)
with open(
os.path.join(save_folder_path, "classification_results.txt"), "w"
) as fd:
fd.write(f"Epoch: {epoch}\n")
fd.write(f"Train Accuracy: {train_accuracy}\n")
fd.write(f"Test Accuracy: {test_accuracy}\n")
fd.write(f"Test Precision: {test_precision}\n")
fd.write(f"Test Recall: {test_recall}\n")
fd.write(f"Test F1: {test_f1}\n")
fd.write(f"Train SDN accuracy: {train_sdn_accuracy}\n")
fd.write(f"Test SDN accuracy: {test_sdn_accuracy}\n")
fd.write(f"Train GestureStart error: {train_gs_error}\n")
fd.write(f"Train GestureEnd error: {train_ge_error}\n")
fd.write(f"Test GestureStart error: {test_gs_error}\n")
fd.write(f"Test GestureEnd error: {test_ge_error}\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train OO-dMVMT')
parser.add_argument('--cfg_path', default='configs/train_OO-dMVMT.yaml', help='Path to the train.yaml config')
args = parser.parse_args()
# SETTINGS
cfg_path = args.cfg_path
args = OmegaConf.load(cfg_path)
dataset_train_dir = args.dataset_train_dir
dataset_test_dir = args.dataset_test_dir
device = torch.device(f"cuda:{args.device_index}" if torch.cuda.is_available() else "cpu")
W = args.W
joints_number = args.joints_number
joints_channels = args.joints_channels
embedding_dim = int((joints_number - 1) * joints_number / 2)
filters_num = args.filters_num
num_classes = args.num_classes
test_batch_sz = args.test_batch_sz
train_batch_sz = args.train_batch_sz
assert W % 2 == 0
exp = f"OO-dMVMT_{W:=}" if args.experiment_name is None else args.experiment_name
seed = 0
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
print("Using device: %s" % device)
model: dMVMT = dMVMT(
frame_l=W,
joint_n=joints_number,
joint_d=joints_channels,
feat_d=embedding_dim,
filters=filters_num,
class_num=num_classes,
).to(device)
print(
"total number of parameters of the network is: "
+ str(sum(p.numel() for p in model.parameters() if p.requires_grad))
)
train(
model = model,
exp = exp,
W = W,
normalize = args.normalize,
n_epochs = args.n_epochs,
dataset_step = args.step,
do_gs_ge = args.do_gs_ge,
do_gs_ge_onOff = args.do_gs_ge_OnOff,
do_sdn = args.do_sdn,
# weighted = False,
do_onOff_skip = args.do_OnOff_skip,
save_metrics = args.save_metrics,
calc_m=args.calc_m,
device=device
)