-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
626 lines (507 loc) · 19 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import os
import pickle
import sys
import time
import numpy as np
import bz2
import _pickle as cPickle
import gzip
import quaternion
import matplotlib.pyplot as plt
import skimage
import torch
import habitat
from habitat import get_config
from habitat.sims import make_sim
from habitat.datasets import make_dataset
from tqdm import tqdm
import gzip
import json
import clip
import cv2
import numpy as np
import skfmm
import skimage
from numpy import ma
from lernr.utils import (
get_habitat_coordinate_from_x_y_coordinate,
sim_continuous_to_sim_map,
sim_map_to_sim_continuous,
)
def get_mask(sx, sy, scale, step_size):
size = int(step_size // scale) * 2 + 1
mask = np.zeros((size, size))
for i in range(size):
for j in range(size):
if ((i + 0.5) - (size // 2 + sx)) ** 2 + (
(j + 0.5) - (size // 2 + sy)
) ** 2 <= step_size**2 and ((i + 0.5) - (size // 2 + sx)) ** 2 + (
(j + 0.5) - (size // 2 + sy)
) ** 2 > (
step_size - 1
) ** 2:
mask[i, j] = 1
mask[size // 2, size // 2] = 1
return mask
def get_dist(sx, sy, scale, step_size):
size = int(step_size // scale) * 2 + 1
mask = np.zeros((size, size)) + 1e-10
for i in range(size):
for j in range(size):
if ((i + 0.5) - (size // 2 + sx)) ** 2 + (
(j + 0.5) - (size // 2 + sy)
) ** 2 <= step_size**2:
mask[i, j] = max(
5,
(
((i + 0.5) - (size // 2 + sx)) ** 2
+ ((j + 0.5) - (size // 2 + sy)) ** 2
)
** 0.5,
)
return mask
class FMMPlanner:
def __init__(self, traversible, scale=1, step_size=5):
self.scale = scale
self.step_size = step_size
if scale != 1.0:
self.traversible = cv2.resize(
traversible,
(traversible.shape[1] // scale, traversible.shape[0] // scale),
interpolation=cv2.INTER_NEAREST,
)
self.traversible = np.rint(self.traversible)
else:
self.traversible = traversible
self.du = int(self.step_size / (self.scale * 1.0))
self.fmm_dist = None
def set_goal(self, goal, auto_improve=False):
traversible_ma = ma.masked_values(self.traversible * 1, 0)
goal_x, goal_y = int(goal[0] / (self.scale * 1.0)), int(
goal[1] / (self.scale * 1.0)
)
if self.traversible[goal_x, goal_y] == 0.0 and auto_improve:
goal_x, goal_y = self._find_nearest_goal([goal_x, goal_y])
traversible_ma[goal_x, goal_y] = 0
dd = skfmm.distance(traversible_ma, dx=1)
dd = ma.filled(dd, np.max(dd) + 1)
self.fmm_dist = dd
return
def set_multi_goal(self, goal_map):
traversible_ma = ma.masked_values(self.traversible * 1, 0)
traversible_ma[goal_map == 1] = 0
dd = skfmm.distance(traversible_ma, dx=1)
dd = ma.filled(dd, np.max(dd) + 1)
self.fmm_dist = dd
return
def get_short_term_goal(self, state):
scale = self.scale * 1.0
state = [x / scale for x in state]
dx, dy = state[0] - int(state[0]), state[1] - int(state[1])
mask = get_mask(dx, dy, scale, self.step_size)
dist_mask = get_dist(dx, dy, scale, self.step_size)
state = [int(x) for x in state]
dist = np.pad(
self.fmm_dist,
self.du,
"constant",
constant_values=self.fmm_dist.shape[0] ** 2,
)
subset = dist[
state[0] : state[0] + 2 * self.du + 1, state[1] : state[1] + 2 * self.du + 1
]
assert (
subset.shape[0] == 2 * self.du + 1 and subset.shape[1] == 2 * self.du + 1
), "Planning error: unexpected subset shape {}".format(subset.shape)
subset *= mask
subset += (1 - mask) * self.fmm_dist.shape[0] ** 2
if subset[self.du, self.du] < 0.25 * 100 / 5.0: # 25cm
stop = True
else:
stop = False
subset -= subset[self.du, self.du]
ratio1 = subset / dist_mask
subset[ratio1 < -1.5] = 1
(stg_x, stg_y) = np.unravel_index(np.argmin(subset), subset.shape)
if subset[stg_x, stg_y] > -0.0001:
replan = True
else:
replan = False
return (
(stg_x + state[0] - self.du) * scale,
(stg_y + state[1] - self.du) * scale,
replan,
stop,
)
def _find_nearest_goal(self, goal):
traversible = (
skimage.morphology.binary_dilation(
np.zeros(self.traversible.shape), skimage.morphology.disk(2)
)
!= True
)
traversible = traversible * 1.0
planner = FMMPlanner(traversible)
planner.set_goal(goal)
mask = self.traversible
dist_map = planner.fmm_dist * mask
dist_map[dist_map == 0] = dist_map.max()
goal = np.unravel_index(dist_map.argmin(), dist_map.shape)
return goal
def show_me_at(sim, x, y, map_obj_origin):
coords = (y, x)
new_pos = sim_map_to_sim_continuous(coords=coords, map_obj_origin=map_obj_origin)
obs = sim.get_observations_at(new_pos, rot)
rgb = obs["rgb"]
return rgb
def get_goals_from_lernr_map(
lernr_map: torch.Tensor,
lernr_mask: torch.Tensor,
goal_name: str,
houseWords: list,
origRT,
topk: int = 5,
model=None,
device=None,
):
"""
Args:
lernr_map (torch.Tensor): _description_
goal_name (str): _description_
topk (int, optional): _description_. Defaults to 5.
Returns:
List[Tuple[int,int]]: coordinates in the map of the topk goals
"""
h, w = lernr_map.shape[2], lernr_map.shape[3]
B = lernr_map.shape[0]
locations = []
lernr_map_softmax = None
# query word
TOP_K_MATCHES = topk
wList = houseWords.split(",")
text_words = wList
text_words.insert(0, f"{goal_name}")
words = clip.tokenize(text_words).to(device)
with torch.no_grad():
text_features = model.encode_text(words)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
map_reshaped = lernr_map.permute(0, 2, 3, 1)
resText = (
torch.matmul(
map_reshaped.reshape(1, -1, 512).float(),
torch.transpose(text_features.float(), 1, 0),
)
* 100
)
lernr_map_softmax = resText.softmax(dim=-1)
lernr_map_softmax = torch.reshape(lernr_map_softmax[0, :, 0].to(device), (h, w))
# Only the similarities in the map are taken into account
mask = lernr_mask.squeeze()
mask = torch.flatten(mask)
map = torch.flatten(lernr_map_softmax)
map_points = mask <= 1
indices = map_points.nonzero()
m = torch.flatten(map)
m[indices] = 0
lernr_map_softmax = torch.reshape(m, (h, w))
max_values, max_indices = torch.topk(lernr_map_softmax.view(B, -1), k=TOP_K_MATCHES)
max_rows = max_indices // lernr_map.shape[3]
max_cols = max_indices % lernr_map.shape[3]
for GX, GY in zip(max_cols.squeeze(), max_rows.squeeze()):
locations.append([GX.item(), GY.item()])
habitat_locs = []
for loc in locations:
p, r = get_habitat_coordinate_from_x_y_coordinate(loc[1], loc[0], origRT)
habitat_locs.append(p)
return habitat_locs, locations, lernr_map_softmax.detach().cpu()
def debug(goal_map_location, lernr_goal_pos):
x, y = goal_map_location
###### DEBUG
plt.figure(figsize=(10, 10))
plt.suptitle(f"scene: {scene_name}, goal: {goal_name}")
plt.subplot(2, 2, 1)
plt.title("GT")
plt.imshow(map_dsts)
plt.scatter(x, y, marker="*", c="r", s=20)
plt.subplot(2, 2, 2)
plt.title("GT rgb")
rgb = show_me_at(sim, x, y, map_obj_origin)
plt.imshow(rgb)
plt.subplot(2, 2, 3)
plt.title("lernr")
x, y = lernr_goal_pos
plt.imshow(lernr_map_softmax)
plt.scatter(x, y, marker="*", c="r", s=20)
plt.subplot(2, 2, 4)
plt.title("lernr rgb")
obs = sim.get_observations_at(top1_hab, rot)
rgb = obs["rgb"]
plt.imshow(rgb)
plt.savefig("current.png")
plt.show()
# plt.pause(5)
######
def unproj_gibson(coords, map_obj_origin):
# unproject from 2D to SIM 3D
pos = [0, 0, 0]
min_x, min_y = map_obj_origin / 100.0
x, y = coords[0:2]
hab_loc = (-(y / 20) - min_y), (-(x / 20) - min_x)
pos[2] = -hab_loc[0]
pos[0] = -hab_loc[1]
return pos
def proj_gibson(pos, map_obj_origin):
# project from SIM 3D to 2D
x = -pos[2]
y = -pos[0]
min_x, min_y = map_obj_origin / 100.0
map_y = int((-y - min_y) * 20.0)
map_x = int((-x - min_x) * 20.0)
map_loc = [map_x, map_y]
return map_loc
DATASET_PATH = "/media/data/all_dataset"
if __name__ == "__main__":
#Negative prompt
if len(sys.argv) > 1:
negative_prompts = sys.argv[1]
else:
negative_prompts = "things, stuff, textures, objects"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
# container for results
SR = [] # TODO
SPL = [] # TODO
# CREATE CONFIGURATION
config = get_config()
cfg = config
cfg.defrost()
habitat_api_path = os.path.join(os.path.dirname(habitat.__file__), "../")
cfg.DATASET.SCENES_DIR = os.path.join(habitat_api_path, cfg.DATASET.SCENES_DIR)
cfg.DATASET.DATA_PATH = os.path.join(
habitat_api_path, cfg.DATASET.DATA_PATH.replace("habitat-test-scenes", "gibson")
)
cfg.DATASET.SCENES_DIR = (
f"{DATASET_PATH}/gibson/scene_dataset/gibson_habitat"
)
cfg.DATASET.DATA_PATH = f"{DATASET_PATH}/gibson/object_nav_jsons/objectnav/gibson/v1.1/{{split}}/{{split}}.json.gz"
cfg.SIMULATOR.SCENE_DATASET = f"{DATASET_PATH}/gibson/scene_dataset/gibson_habitat/"
cfg.DATASET.TYPE = "PointNav-v1"
cfg.SIMULATOR.RGB_SENSOR.HEIGHT = 128
cfg.SIMULATOR.RGB_SENSOR.WIDTH = 128
cfg.SIMULATOR.DEPTH_SENSOR.HEIGHT = 128
cfg.SIMULATOR.DEPTH_SENSOR.WIDTH = 128
cfg.TASK.SENSORS = cfg.SIMULATOR.AGENT_0.SENSORS = ["RGB_SENSOR", "DEPTH_SENSOR"]
cfg.freeze()
dataset = make_dataset("PointNav-v1")
cfg.defrost()
cfg.DATASET.SPLIT = "val"
cfg.freeze()
val_scenes = dataset.get_scenes_to_load(cfg.DATASET)
all_scenes = val_scenes
print(f"Total {len(all_scenes)} scenes found")
print(all_scenes)
for i, scene in enumerate(all_scenes):
if "episodes" in scene:
continue
print(i, scene)
success_th = 1.0
success_rate = 0
total = 0
distances = {}
# TRAVERSING ALL THE VALIDATION SCENE
for scene in tqdm(all_scenes, desc="Scene in val"):
if "episodes" in scene:
continue
if "Collierville" in scene:
continue
# Filter scene
#if "Wiconisco" not in scene:
# continue
total += 1
print(scene)
cfg.defrost()
cfg.SIMULATOR.SCENE = os.path.join(cfg.DATASET.SCENES_DIR, scene)
cfg.freeze()
sim = make_sim(id_sim=cfg.SIMULATOR.TYPE, config=cfg.SIMULATOR)
# NOW LOAD THE EPISODES - json file
file = scene.replace(".glb", "")
episode_path = f"{DATASET_PATH}/gibson/object_nav_jsons/objectnav/gibson/v1.1/val/content/{file}_episodes.json.gz"
with gzip.open(episode_path, "rb") as file:
content = file.read().decode("utf-8")
episodes_content = json.loads(content)
# NOW LOAD THE GOAL INFO - json file
with gzip.open(
f"{DATASET_PATH}/gibson/object_nav_jsons/objectnav/gibson/v1.1/val/content/{scene}.json.gz",
"rb",
) as file:
content = file.read().decode("utf-8")
GOAL_INFO = json.loads(content)
print("GOAl info", GOAL_INFO)
with bz2.BZ2File(
f"{DATASET_PATH}/gibson/object_nav_jsons/objectnav/gibson/v1.1/val/val_info.pbz2",
"rb",
) as f:
dataset_info = cPickle.load(f)
# contains also the semantic map
for episode in episodes_content["episodes"]:
floor_idx = episode["floor_id"]
scene_name = episode["scene_id"].replace(".glb", "").split("/")[-1]
goal_name = episode["object_category"]
goal_idx = episode["object_id"]
pos = episode["start_position"]
rot = quaternion.from_float_array(episode["start_rotation"])
# Load scene info
scene_info = dataset_info[scene_name]
sem_map = scene_info[floor_idx]["sem_map"]
map_obj_origin = scene_info[floor_idx]["origin"]
# Setup ground truth planner
object_boundary = 1
map_resolution = 5
selem = skimage.morphology.disk(2)
traversible = skimage.morphology.binary_dilation(sem_map[0], selem) != True
traversible = 1 - traversible
planner = FMMPlanner(traversible)
selem = skimage.morphology.disk(
int(object_boundary * 100.0 / map_resolution)
)
goal_map = (
skimage.morphology.binary_dilation(sem_map[goal_idx + 1], selem) != True
)
goal_map = 1 - goal_map
planner.set_multi_goal(goal_map)
# Get starting loc in GT map coordinates
x = -pos[2]
y = -pos[0]
min_x, min_y = map_obj_origin / 100.0
map_loc = int((-y - min_y) * 20.0), int((-x - min_x) * 20.0)
gt_planner = planner
starting_loc = map_loc
object_boundary = object_boundary
goal_idx = goal_idx
goal_name = goal_name
map_obj_origin = map_obj_origin
starting_distance = (
gt_planner.fmm_dist[starting_loc] / 20.0 + object_boundary
)
map_dsts = planner.fmm_dist
h, w = map_dsts.shape[0:2]
# Load lernr map
with open(f"lernr_maps/{scene_name}_map_dict.pkl", "rb") as f:
lernr_data = pickle.load(f)
print("Loading map:", f"lernr_maps/{scene_name}_map_dict.pkl")
lernr_map = lernr_data["map"]
lernr_mask = lernr_data["mask"]
if "origin_Rt" not in lernr_data:
orig_Rt = lernr_data["origin_pose"]
else:
orig_Rt = lernr_data["origin_Rt"]
topk = 25
habitat_locs, locations, lernr_map_softmax = get_goals_from_lernr_map(
lernr_map[:, 32:, :, :],
lernr_mask,
goal_name,
negative_prompts,
orig_Rt,
topk,
model,
device,
)
top1_hab = habitat_locs[0]
top1_lernr = locations[0]
# goal found from RNR projected to gibson map
projected = proj_gibson(top1_hab, map_obj_origin)
found = goal_map[projected[1], projected[0]]
dist = 0
if not found:
# non zero indices
nz = np.nonzero(goal_map)
# get closest non zero indexes (row columns)
closest = np.argmin(
np.linalg.norm(
np.array(nz) - np.array(projected)[:, None], axis=0
)
)
goal_map_location = [nz[1][closest], nz[0][closest]]
goal_hab = sim_map_to_sim_continuous(
coords=[goal_map_location[1], goal_map_location[0]],
map_obj_origin=map_obj_origin,
)
dist = np.linalg.norm(np.array(top1_hab) - np.array(goal_hab))
if dist < 0:
print("IMPOSSIBRU")
debug_mode = False
if debug_mode:
plt.figure(figsize=(10, 10))
plt.suptitle(
f"Goal name: {goal_name} | DTS: {dist} | Success: {found}"
)
plt.subplot(1, 2, 1)
plt.imshow(goal_map)
if not found:
plt.scatter(
goal_map_location[0],
goal_map_location[1],
marker="*",
c="g",
s=50,
)
plt.scatter(projected[0], projected[1], marker="*", c="r", s=50)
plt.subplot(1, 2, 2)
plt.imshow(map_dsts)
if not found:
plt.scatter(
goal_map_location[0],
goal_map_location[1],
marker="*",
c="g",
s=50,
)
plt.scatter(projected[0], projected[1], marker="*", c="r", s=50)
plt.show()
if scene_name not in distances:
distances[scene_name] = []
distances[scene_name].append(dist)
print("Scene name: ", scene_name, "Goal name", goal_name, "Distance ", dist)
if scene_name not in distances:
distances[scene_name] = []
dists = np.asarray(distances[scene_name])
total = len(dists)
success_rate = np.sum(np.array(dists) < success_th) / total
dts = dists - success_th
dts[dts < 0] = 0 # equivalent of max(0, d - th)
print("Scene", scene_name, "Success", success_rate, "DTS (m)", np.mean(dts))
sim.close()
fname = f"{int(time.time())}_results.txt"
fp = open(fname, "w")
# For each scene
print("---" * 25)
for scene_name in distances.keys():
dists = np.asarray(distances[scene_name])
total = len(dists)
success_rate = np.sum(np.array(dists) < success_th) / total
dts = dists - success_th
dts[dts < 0] = 0 # equivalent of max(0, d - th)
mean_dts = np.mean(dts)
print("Scene", scene_name, "Success", success_rate, "DTS (m)", mean_dts)
print(
"Scene", scene_name, "Success", success_rate, "DTS (m)", mean_dts, file=fp
)
if scene_name == "Corozal":
if success_rate >= 0.685: # or mean_dts < 2.569954:
with open("winners.txt", "a") as ffp:
print(f"WINNER for {scene_name}!", fname, negative_prompts, file=ffp)
# Gibson val set
total = sum([len(distances[scene_name]) for scene_name in distances.keys()])
success_rate = 0
dts = 0
for scene_name in distances.keys():
for d in distances[scene_name]:
if d < success_th:
success_rate += 1
dts += max(0, d - success_th)
print("Negative prompts: ", negative_prompts, file=fp)
print(
f"Gibson results: {success_rate/total:.3f} | DTS (m) {dts/total:.4f}", file=fp
)
print("Negative prompts: ", negative_prompts)
print(f"Gibson results: {success_rate/total:.3f} | DTS (m) {dts/total:.4f}")