forked from andybalholm/brotli
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock_splitter_literal.go
433 lines (379 loc) · 13.4 KB
/
block_splitter_literal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
package brotli
import "math"
/* Copyright 2013 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
func initialEntropyCodesLiteral(data []byte, length uint, stride uint, num_histograms uint, histograms []histogramLiteral) {
var seed uint32 = 7
var block_length uint = length / num_histograms
var i uint
clearHistogramsLiteral(histograms, num_histograms)
for i = 0; i < num_histograms; i++ {
var pos uint = length * i / num_histograms
if i != 0 {
pos += uint(myRand(&seed) % uint32(block_length))
}
if pos+stride >= length {
pos = length - stride - 1
}
histogramAddVectorLiteral(&histograms[i], data[pos:], stride)
}
}
func randomSampleLiteral(seed *uint32, data []byte, length uint, stride uint, sample *histogramLiteral) {
var pos uint = 0
if stride >= length {
stride = length
} else {
pos = uint(myRand(seed) % uint32(length-stride+1))
}
histogramAddVectorLiteral(sample, data[pos:], stride)
}
func refineEntropyCodesLiteral(data []byte, length uint, stride uint, num_histograms uint, histograms []histogramLiteral) {
var iters uint = kIterMulForRefining*length/stride + kMinItersForRefining
var seed uint32 = 7
var iter uint
iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms
for iter = 0; iter < iters; iter++ {
var sample histogramLiteral
histogramClearLiteral(&sample)
randomSampleLiteral(&seed, data, length, stride, &sample)
histogramAddHistogramLiteral(&histograms[iter%num_histograms], &sample)
}
}
/* Assigns a block id from the range [0, num_histograms) to each data element
in data[0..length) and fills in block_id[0..length) with the assigned values.
Returns the number of blocks, i.e. one plus the number of block switches. */
func findBlocksLiteral(data []byte, length uint, block_switch_bitcost float64, num_histograms uint, histograms []histogramLiteral, insert_cost []float64, cost []float64, switch_signal []byte, block_id []byte) uint {
var data_size uint = histogramDataSizeLiteral()
var bitmaplen uint = (num_histograms + 7) >> 3
var num_blocks uint = 1
var i uint
var j uint
assert(num_histograms <= 256)
if num_histograms <= 1 {
for i = 0; i < length; i++ {
block_id[i] = 0
}
return 1
}
for i := 0; i < int(data_size*num_histograms); i++ {
insert_cost[i] = 0
}
for i = 0; i < num_histograms; i++ {
insert_cost[i] = fastLog2(uint(uint32(histograms[i].total_count_)))
}
for i = data_size; i != 0; {
i--
for j = 0; j < num_histograms; j++ {
insert_cost[i*num_histograms+j] = insert_cost[j] - bitCost(uint(histograms[j].data_[i]))
}
}
for i := 0; i < int(num_histograms); i++ {
cost[i] = 0
}
for i := 0; i < int(length*bitmaplen); i++ {
switch_signal[i] = 0
}
/* After each iteration of this loop, cost[k] will contain the difference
between the minimum cost of arriving at the current byte position using
entropy code k, and the minimum cost of arriving at the current byte
position. This difference is capped at the block switch cost, and if it
reaches block switch cost, it means that when we trace back from the last
position, we need to switch here. */
for i = 0; i < length; i++ {
var byte_ix uint = i
var ix uint = byte_ix * bitmaplen
var insert_cost_ix uint = uint(data[byte_ix]) * num_histograms
var min_cost float64 = 1e99
var block_switch_cost float64 = block_switch_bitcost
var k uint
for k = 0; k < num_histograms; k++ {
/* We are coding the symbol in data[byte_ix] with entropy code k. */
cost[k] += insert_cost[insert_cost_ix+k]
if cost[k] < min_cost {
min_cost = cost[k]
block_id[byte_ix] = byte(k)
}
}
/* More blocks for the beginning. */
if byte_ix < 2000 {
block_switch_cost *= 0.77 + 0.07*float64(byte_ix)/2000
}
for k = 0; k < num_histograms; k++ {
cost[k] -= min_cost
if cost[k] >= block_switch_cost {
var mask byte = byte(1 << (k & 7))
cost[k] = block_switch_cost
assert(k>>3 < bitmaplen)
switch_signal[ix+(k>>3)] |= mask
/* Trace back from the last position and switch at the marked places. */
}
}
}
{
var byte_ix uint = length - 1
var ix uint = byte_ix * bitmaplen
var cur_id byte = block_id[byte_ix]
for byte_ix > 0 {
var mask byte = byte(1 << (cur_id & 7))
assert(uint(cur_id)>>3 < bitmaplen)
byte_ix--
ix -= bitmaplen
if switch_signal[ix+uint(cur_id>>3)]&mask != 0 {
if cur_id != block_id[byte_ix] {
cur_id = block_id[byte_ix]
num_blocks++
}
}
block_id[byte_ix] = cur_id
}
}
return num_blocks
}
var remapBlockIdsLiteral_kInvalidId uint16 = 256
func remapBlockIdsLiteral(block_ids []byte, length uint, new_id []uint16, num_histograms uint) uint {
var next_id uint16 = 0
var i uint
for i = 0; i < num_histograms; i++ {
new_id[i] = remapBlockIdsLiteral_kInvalidId
}
for i = 0; i < length; i++ {
assert(uint(block_ids[i]) < num_histograms)
if new_id[block_ids[i]] == remapBlockIdsLiteral_kInvalidId {
new_id[block_ids[i]] = next_id
next_id++
}
}
for i = 0; i < length; i++ {
block_ids[i] = byte(new_id[block_ids[i]])
assert(uint(block_ids[i]) < num_histograms)
}
assert(uint(next_id) <= num_histograms)
return uint(next_id)
}
func buildBlockHistogramsLiteral(data []byte, length uint, block_ids []byte, num_histograms uint, histograms []histogramLiteral) {
var i uint
clearHistogramsLiteral(histograms, num_histograms)
for i = 0; i < length; i++ {
histogramAddLiteral(&histograms[block_ids[i]], uint(data[i]))
}
}
var clusterBlocksLiteral_kInvalidIndex uint32 = math.MaxUint32
func clusterBlocksLiteral(data []byte, length uint, num_blocks uint, block_ids []byte, split *blockSplit) {
var histogram_symbols []uint32 = make([]uint32, num_blocks)
var block_lengths []uint32 = make([]uint32, num_blocks)
var expected_num_clusters uint = clustersPerBatch * (num_blocks + histogramsPerBatch - 1) / histogramsPerBatch
var all_histograms_size uint = 0
var all_histograms_capacity uint = expected_num_clusters
var all_histograms []histogramLiteral = make([]histogramLiteral, all_histograms_capacity)
var cluster_size_size uint = 0
var cluster_size_capacity uint = expected_num_clusters
var cluster_size []uint32 = make([]uint32, cluster_size_capacity)
var num_clusters uint = 0
var histograms []histogramLiteral = make([]histogramLiteral, brotli_min_size_t(num_blocks, histogramsPerBatch))
var max_num_pairs uint = histogramsPerBatch * histogramsPerBatch / 2
var pairs_capacity uint = max_num_pairs + 1
var pairs []histogramPair = make([]histogramPair, pairs_capacity)
var pos uint = 0
var clusters []uint32
var num_final_clusters uint
var new_index []uint32
var i uint
var sizes = [histogramsPerBatch]uint32{0}
var new_clusters = [histogramsPerBatch]uint32{0}
var symbols = [histogramsPerBatch]uint32{0}
var remap = [histogramsPerBatch]uint32{0}
for i := 0; i < int(num_blocks); i++ {
block_lengths[i] = 0
}
{
var block_idx uint = 0
for i = 0; i < length; i++ {
assert(block_idx < num_blocks)
block_lengths[block_idx]++
if i+1 == length || block_ids[i] != block_ids[i+1] {
block_idx++
}
}
assert(block_idx == num_blocks)
}
for i = 0; i < num_blocks; i += histogramsPerBatch {
var num_to_combine uint = brotli_min_size_t(num_blocks-i, histogramsPerBatch)
var num_new_clusters uint
var j uint
for j = 0; j < num_to_combine; j++ {
var k uint
histogramClearLiteral(&histograms[j])
for k = 0; uint32(k) < block_lengths[i+j]; k++ {
histogramAddLiteral(&histograms[j], uint(data[pos]))
pos++
}
histograms[j].bit_cost_ = populationCostLiteral(&histograms[j])
new_clusters[j] = uint32(j)
symbols[j] = uint32(j)
sizes[j] = 1
}
num_new_clusters = histogramCombineLiteral(histograms, sizes[:], symbols[:], new_clusters[:], []histogramPair(pairs), num_to_combine, num_to_combine, histogramsPerBatch, max_num_pairs)
if all_histograms_capacity < (all_histograms_size + num_new_clusters) {
var _new_size uint
if all_histograms_capacity == 0 {
_new_size = all_histograms_size + num_new_clusters
} else {
_new_size = all_histograms_capacity
}
var new_array []histogramLiteral
for _new_size < (all_histograms_size + num_new_clusters) {
_new_size *= 2
}
new_array = make([]histogramLiteral, _new_size)
if all_histograms_capacity != 0 {
copy(new_array, all_histograms[:all_histograms_capacity])
}
all_histograms = new_array
all_histograms_capacity = _new_size
}
brotli_ensure_capacity_uint32_t(&cluster_size, &cluster_size_capacity, cluster_size_size+num_new_clusters)
for j = 0; j < num_new_clusters; j++ {
all_histograms[all_histograms_size] = histograms[new_clusters[j]]
all_histograms_size++
cluster_size[cluster_size_size] = sizes[new_clusters[j]]
cluster_size_size++
remap[new_clusters[j]] = uint32(j)
}
for j = 0; j < num_to_combine; j++ {
histogram_symbols[i+j] = uint32(num_clusters) + remap[symbols[j]]
}
num_clusters += num_new_clusters
assert(num_clusters == cluster_size_size)
assert(num_clusters == all_histograms_size)
}
histograms = nil
max_num_pairs = brotli_min_size_t(64*num_clusters, (num_clusters/2)*num_clusters)
if pairs_capacity < max_num_pairs+1 {
pairs = nil
pairs = make([]histogramPair, (max_num_pairs + 1))
}
clusters = make([]uint32, num_clusters)
for i = 0; i < num_clusters; i++ {
clusters[i] = uint32(i)
}
num_final_clusters = histogramCombineLiteral(all_histograms, cluster_size, histogram_symbols, clusters, pairs, num_clusters, num_blocks, maxNumberOfBlockTypes, max_num_pairs)
pairs = nil
cluster_size = nil
new_index = make([]uint32, num_clusters)
for i = 0; i < num_clusters; i++ {
new_index[i] = clusterBlocksLiteral_kInvalidIndex
}
pos = 0
{
var next_index uint32 = 0
for i = 0; i < num_blocks; i++ {
var histo histogramLiteral
var j uint
var best_out uint32
var best_bits float64
histogramClearLiteral(&histo)
for j = 0; uint32(j) < block_lengths[i]; j++ {
histogramAddLiteral(&histo, uint(data[pos]))
pos++
}
if i == 0 {
best_out = histogram_symbols[0]
} else {
best_out = histogram_symbols[i-1]
}
best_bits = histogramBitCostDistanceLiteral(&histo, &all_histograms[best_out])
for j = 0; j < num_final_clusters; j++ {
var cur_bits float64 = histogramBitCostDistanceLiteral(&histo, &all_histograms[clusters[j]])
if cur_bits < best_bits {
best_bits = cur_bits
best_out = clusters[j]
}
}
histogram_symbols[i] = best_out
if new_index[best_out] == clusterBlocksLiteral_kInvalidIndex {
new_index[best_out] = next_index
next_index++
}
}
}
clusters = nil
all_histograms = nil
brotli_ensure_capacity_uint8_t(&split.types, &split.types_alloc_size, num_blocks)
brotli_ensure_capacity_uint32_t(&split.lengths, &split.lengths_alloc_size, num_blocks)
{
var cur_length uint32 = 0
var block_idx uint = 0
var max_type byte = 0
for i = 0; i < num_blocks; i++ {
cur_length += block_lengths[i]
if i+1 == num_blocks || histogram_symbols[i] != histogram_symbols[i+1] {
var id byte = byte(new_index[histogram_symbols[i]])
split.types[block_idx] = id
split.lengths[block_idx] = cur_length
max_type = brotli_max_uint8_t(max_type, id)
cur_length = 0
block_idx++
}
}
split.num_blocks = block_idx
split.num_types = uint(max_type) + 1
}
new_index = nil
block_lengths = nil
histogram_symbols = nil
}
func splitByteVectorLiteral(data []byte, length uint, literals_per_histogram uint, max_histograms uint, sampling_stride_length uint, block_switch_cost float64, params *encoderParams, split *blockSplit) {
var data_size uint = histogramDataSizeLiteral()
var num_histograms uint = length/literals_per_histogram + 1
var histograms []histogramLiteral
if num_histograms > max_histograms {
num_histograms = max_histograms
}
if length == 0 {
split.num_types = 1
return
} else if length < kMinLengthForBlockSplitting {
brotli_ensure_capacity_uint8_t(&split.types, &split.types_alloc_size, split.num_blocks+1)
brotli_ensure_capacity_uint32_t(&split.lengths, &split.lengths_alloc_size, split.num_blocks+1)
split.num_types = 1
split.types[split.num_blocks] = 0
split.lengths[split.num_blocks] = uint32(length)
split.num_blocks++
return
}
histograms = make([]histogramLiteral, num_histograms)
/* Find good entropy codes. */
initialEntropyCodesLiteral(data, length, sampling_stride_length, num_histograms, histograms)
refineEntropyCodesLiteral(data, length, sampling_stride_length, num_histograms, histograms)
{
var block_ids []byte = make([]byte, length)
var num_blocks uint = 0
var bitmaplen uint = (num_histograms + 7) >> 3
var insert_cost []float64 = make([]float64, (data_size * num_histograms))
var cost []float64 = make([]float64, num_histograms)
var switch_signal []byte = make([]byte, (length * bitmaplen))
var new_id []uint16 = make([]uint16, num_histograms)
var iters uint
if params.quality < hqZopflificationQuality {
iters = 3
} else {
iters = 10
}
/* Find a good path through literals with the good entropy codes. */
var i uint
for i = 0; i < iters; i++ {
num_blocks = findBlocksLiteral(data, length, block_switch_cost, num_histograms, histograms, insert_cost, cost, switch_signal, block_ids)
num_histograms = remapBlockIdsLiteral(block_ids, length, new_id, num_histograms)
buildBlockHistogramsLiteral(data, length, block_ids, num_histograms, histograms)
}
insert_cost = nil
cost = nil
switch_signal = nil
new_id = nil
histograms = nil
clusterBlocksLiteral(data, length, num_blocks, block_ids, split)
block_ids = nil
}
}