forked from foamliu/Deep-Image-Matting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
120 lines (97 loc) · 4.24 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import math
import os
import random
import cv2 as cv
import keras.backend as K
import numpy as np
from data_generator import generate_trimap, random_choice, get_alpha_test
from model import build_encoder_decoder, build_refinement
from utils import compute_mse_loss, compute_sad_loss
from utils import get_final_output, safe_crop, draw_str
def composite4(fg, bg, a, w, h):
fg = np.array(fg, np.float32)
bg_h, bg_w = bg.shape[:2]
x = 0
if bg_w > w:
x = np.random.randint(0, bg_w - w)
y = 0
if bg_h > h:
y = np.random.randint(0, bg_h - h)
bg = np.array(bg[y:y + h, x:x + w], np.float32)
alpha = np.zeros((h, w, 1), np.float32)
alpha[:, :, 0] = a / 255.
im = alpha * fg + (1 - alpha) * bg
im = im.astype(np.uint8)
return im, bg
if __name__ == '__main__':
img_rows, img_cols = 320, 320
channel = 4
pretrained_path = 'models/final.42-0.0398.hdf5'
encoder_decoder = build_encoder_decoder()
final = build_refinement(encoder_decoder)
final.load_weights(pretrained_path)
print(final.summary())
out_test_path = 'data/merged_test/'
test_images = [f for f in os.listdir(out_test_path) if
os.path.isfile(os.path.join(out_test_path, f)) and f.endswith('.png')]
samples = random.sample(test_images, 10)
bg_test = 'data/bg_test/'
test_bgs = [f for f in os.listdir(bg_test) if
os.path.isfile(os.path.join(bg_test, f)) and f.endswith('.jpg')]
sample_bgs = random.sample(test_bgs, 10)
total_loss = 0.0
for i in range(len(samples)):
filename = samples[i]
image_name = filename.split('.')[0]
print('\nStart processing image: {}'.format(filename))
bgr_img = cv.imread(os.path.join(out_test_path, filename))
bg_h, bg_w = bgr_img.shape[:2]
print('bg_h, bg_w: ' + str((bg_h, bg_w)))
a = get_alpha_test(image_name)
a_h, a_w = a.shape[:2]
print('a_h, a_w: ' + str((a_h, a_w)))
alpha = np.zeros((bg_h, bg_w), np.float32)
alpha[0:a_h, 0:a_w] = a
trimap = generate_trimap(alpha)
different_sizes = [(320, 320), (320, 320), (320, 320), (480, 480), (640, 640)]
crop_size = random.choice(different_sizes)
x, y = random_choice(trimap, crop_size)
print('x, y: ' + str((x, y)))
bgr_img = safe_crop(bgr_img, x, y, crop_size)
alpha = safe_crop(alpha, x, y, crop_size)
trimap = safe_crop(trimap, x, y, crop_size)
cv.imwrite('images/{}_image.png'.format(i), np.array(bgr_img).astype(np.uint8))
cv.imwrite('images/{}_trimap.png'.format(i), np.array(trimap).astype(np.uint8))
cv.imwrite('images/{}_alpha.png'.format(i), np.array(alpha).astype(np.uint8))
x_test = np.empty((1, img_rows, img_cols, 4), dtype=np.float32)
x_test[0, :, :, 0:3] = bgr_img / 255.
x_test[0, :, :, 3] = trimap / 255.
y_true = np.empty((1, img_rows, img_cols, 2), dtype=np.float32)
y_true[0, :, :, 0] = alpha / 255.
y_true[0, :, :, 1] = trimap / 255.
y_pred = final.predict(x_test)
# print('y_pred.shape: ' + str(y_pred.shape))
y_pred = np.reshape(y_pred, (img_rows, img_cols))
print(y_pred.shape)
y_pred = y_pred * 255.0
y_pred = get_final_output(y_pred, trimap)
y_pred = y_pred.astype(np.uint8)
sad_loss = compute_sad_loss(y_pred, alpha, trimap)
mse_loss = compute_mse_loss(y_pred, alpha, trimap)
str_msg = 'sad_loss: %.4f, mse_loss: %.4f, crop_size: %s' % (sad_loss, mse_loss, str(crop_size))
print(str_msg)
out = y_pred.copy()
draw_str(out, (10, 20), str_msg)
cv.imwrite('images/{}_out.png'.format(i), out)
sample_bg = sample_bgs[i]
bg = cv.imread(os.path.join(bg_test, sample_bg))
bh, bw = bg.shape[:2]
wratio = img_cols / bw
hratio = img_rows / bh
ratio = wratio if wratio > hratio else hratio
if ratio > 1:
bg = cv.resize(src=bg, dsize=(math.ceil(bw * ratio), math.ceil(bh * ratio)), interpolation=cv.INTER_CUBIC)
im, bg = composite4(bgr_img, bg, y_pred, img_cols, img_rows)
cv.imwrite('images/{}_compose.png'.format(i), im)
cv.imwrite('images/{}_new_bg.png'.format(i), bg)
K.clear_session()