-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
181 lines (151 loc) · 8.32 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os, datetime
import numpy as np
from utils.utils import *
from models.models import *
from train_test import train, test
import argparse
def create_cli_parser():
# ----- ----- ----- ----- ----- -----
# Command line arguments
# ----- ----- ----- ----- ----- -----
parser = argparse.ArgumentParser()
parser.add_argument('--mode',
default = 'train_test',
type = str,
choices = ['train_test', 'evaluate'],
help = "train_test i.e. train and test a new model, or evaluate i.e. evaluate on an already trained model; default is train_test. ")
parser.add_argument('--warm_start',
default = False,
type = bool,
help = "specify True if you want to further train a partially trained model. model_path must also be specified; default is False.")
parser.add_argument('--model_path',
default = None,
type = str,
help = "specify model path in case of re-training or evaluation; default is None.")
parser.add_argument('--model',
default = 'm_GCN',
type = str,
choices = ['m_GCN', 'ChebNet'],
help = "m_GCN or ChebNet; default is m_GCN.")
parser.add_argument('--n_days',
default = '30',
type = int,
help = "number of days of data to be used for training; default is 30 days.")
parser.add_argument('--batch_size',
default = '48',
type = int,
help = "mini-batch size used for training; default is 48.")
parser.add_argument('--n_epochs',
default = '5000',
type = int,
help = "number of epochs of training; default is 5000.")
parser.add_argument('--lr',
default = '1e-4',
type = float,
help = "learning rate; default is 1e-4.")
parser.add_argument('--decay',
default = '0',
type = float,
help = "weight decay for Adam Optimizer; defaults is 0.")
parser.add_argument('--n_aggr',
default = '45',
type = int,
help = "number of GCN layers; default is 45.")
parser.add_argument('--n_hops',
default = '1',
type = int,
help = "number of hops within each GCN layer; default is 1.")
parser.add_argument('--n_mlp',
default = '2',
type = int,
help = "number of layers in the MLP; default is 2.")
parser.add_argument('--latent_dim',
default = '96',
type = int,
help = "latent dimension; default is 96.")
return parser
def run(args):
""" Creating directories. """
file_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.isdir(os.path.join(file_dir, "tmp")):
os.system('mkdir ' + os.path.join(file_dir, "tmp"))
save_dir = os.path.join(file_dir, "tmp", str(datetime.date.today()))
if not os.path.isdir(save_dir):
os.system('mkdir ' + save_dir)
"""
List of installed sensors as specified by Vrachimis et al.
https://github.com/KIOS-Research/BattLeDIM
"""
installed_sensors = np.array([0, 3, 30, 53, 104, 113, 162, 187, 214, 228, \
287, 295, 331, 341, 409, 414, 428, 457, 468, 494, \
505, 515, 518, 548, 612, 635, 643, 678, 721, 725, \
739, 751, 768])
""" Computing the number of samples based on the specified number of days. """
n_samples = 4 * 24 * args.n_days
""" Specifying the model and printing the number of parameters. """
if args.model == 'ChebNet':
model = ChebNet(in_dim = 1,
out_dim = 1,
latent_dim = args.latent_dim,
K = args.n_hops
).to(device)
elif args.model == 'm_GCN':
model = m_GCN(in_dim = 1,
out_dim = 1,
edge_dim = 3,
latent_dim = args.latent_dim,
batch_size = args.batch_size,
n_aggr = args.n_aggr,
n_hops = args.n_hops,
num_layers = args.n_mlp
).to(device)
total_params = sum(p.numel() for p in model.parameters())
print('Total parameters: ', total_params)
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Trainable parameters: ', trainable_params)
""" Creating an output file to log progress. """
out_f = open(save_dir+"/output_"+args.model+"_"+str(n_samples)+"_"+str(datetime.date.today())+".txt", "a")
if args.mode == 'train_test':
""" Creating Graph for L-Town WDN from the data files. """
inp_file = "networks/L-Town/Toy/L-TOWN.inp"
path_to_data = "networks/L-Town/Toy/Measurements_All_Pressures.csv"
wdn_graph = create_graph(inp_file, path_to_data)
""" Normalizing pressure values using the limits used for generating the data. """
X_min, X_max = 0, 80
wdn_graph.X, wdn_graph.edge_attr = normalize(wdn_graph.X, _min=X_min, _max=X_max), normalize(wdn_graph.edge_attr, dim=1)
""" Creating train-val-test data based on the specified number of samples. """
X_tvt = wdn_graph.X[:n_samples]
""" Creating train-val-test splits. """
tv_N = int(0.8 * n_samples)
X_tv, X_test = X_tvt[:tv_N, :].clone(), X_tvt[tv_N:n_samples, :].clone()
""" Training """
state, model_path = train(X_tv, wdn_graph.edge_indices, wdn_graph.edge_attr, model, installed_sensors, args, save_dir, out_f)
""" Testing """
Y, Y_hat, test_losses = test(X_test, wdn_graph.edge_indices, wdn_graph.edge_attr, model, installed_sensors, args, save_dir, out_f)
""" Analysis """
mean_abs_errors, abs_errors, p_coefs = plot_errors(Y[:,:,0], Y_hat[:,:,0], args, save_dir)
print("Mean Absolute Error and PCC: ", np.round(abs_errors.mean().item(), 6), np.round(np.mean(p_coefs), 6))
print("Mean Absolute Error and PCC: ", np.round(abs_errors.mean().item(), 6), np.round(np.mean(p_coefs), 6), file=out_f)
plot_graph(inp_file, wdn_graph.edge_indices, args, save_dir, node_errors=mean_abs_errors, plot=True, labels=True, cmap='Reds', flag='errors')
elif args.mode == 'evaluate':
""" Creating Graph for L-Town WDN from the data files """
inp_file = "networks/L-Town/Real/L-TOWN_Real.inp"
path_to_data = "networks/L-Town/Real/Measurements_All_Pressures.csv"
wdn_graph = create_graph(inp_file, path_to_data)
""" Normalizing pressure values using the limits used for generating the data """
X_min, X_max = 0, 80
wdn_graph.X, wdn_graph.edge_attr = normalize(wdn_graph.X, _min=X_min, _max=X_max), normalize(wdn_graph.edge_attr, dim=1)
""" Creating train-val-test data based on the specified number of samples. """
X_test = wdn_graph.X[n_samples:]
""" Evaluating """
Y, Y_hat, test_losses = test(X_test, wdn_graph.edge_indices, wdn_graph.edge_attr, model, installed_sensors, args, save_dir, out_f)
""" Analysis """
mean_abs_errors, abs_errors, p_coefs = plot_errors(Y[:,:,0], Y_hat[:,:,0], args, save_dir)
print("Mean Absolute Error and PCC: ", np.round(abs_errors.mean().item(), 6), np.round(np.mean(p_coefs), 6))
print("Mean Absolute Error and PCC: ", np.round(abs_errors.mean().item(), 6), np.round(np.mean(p_coefs), 6), file=out_f)
plot_graph(inp_file, wdn_graph.edge_indices, args, save_dir, node_errors=mean_abs_errors, plot=True, labels=True, cmap='Reds', flag='errors')
if __name__ == '__main__':
parser = create_cli_parser()
args = parser.parse_args()
print(args)
run(args)