This repository has been archived by the owner on Jan 30, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprojectors_personal_functions.py
220 lines (183 loc) · 6.49 KB
/
projectors_personal_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from numpy import *
from tensor_personal_functions import *
from convenient_objects import *
#Generate a tensor, any order, any size
#Value is the default value, commonly 0
def initTensor(value, *lengths):
list = []
dim = len(lengths)
if dim == 1:
for i in range(lengths[0]):
list.append(value)
elif dim > 1:
for i in range(lengths[0]):
list.append(initTensor(value, *lengths[1:]))
return list
def generate_I_tensor4():
I_tensor4 = initTensor(0., 3, 3, 3, 3)
for i in range( len( I_tensor4[0][0][0] ) ):
for j in range( len( I_tensor4[0][0][0] ) ):
for k in range( len( I_tensor4[0][0][0] ) ):
for l in range( len( I_tensor4[0][0][0] ) ):
I_tensor4[i][j][k][l]=(1./2.)*( kronecker(i,k)*kronecker(j,l)+kronecker(i,l)*kronecker(j,k) )
return I_tensor4
def generate_J_tensor4():
J_tensor4 = initTensor(0., 3, 3, 3, 3)
for i in range( len( J_tensor4[0][0][0] ) ):
for j in range( len( J_tensor4[0][0][0] ) ):
for k in range( len( J_tensor4[0][0][0] ) ):
for l in range( len( J_tensor4[0][0][0] ) ):
J_tensor4[i][j][k][l]=(1./3.)*kronecker(i,j)*kronecker(k,l)
return J_tensor4
def generate_K_tensor4():
I_tensor4 = generate_I_tensor4()
J_tensor4 = generate_J_tensor4()
K_tensor4 = initTensor(0., 3, 3, 3, 3)
for i in range( len( K_tensor4[0][0][0] ) ):
for j in range( len( K_tensor4[0][0][0] ) ):
for k in range( len( K_tensor4[0][0][0] ) ):
for l in range( len( K_tensor4[0][0][0] ) ):
K_tensor4[i][j][k][l]= ( I_tensor4[i][j][k][l]-J_tensor4[i][j][k][l] )
return K_tensor4
#Isotropic transverse
def generate_iT_matrix( axis ):
print "====================================================================="
print "Determining iT:"
print "AXIS for transverse isotropy is", axis
identity_matrix = initTensor(0., 3, 3)
for i in range(0, len(identity_matrix)):
for j in range(0, len(identity_matrix)):
identity_matrix[i][j] = kronecker(i, j)
n = initTensor(0., 3)
for i in range(0, len(n)):
if (i == axis):
n[i] = 1.
nXn = outer(n, n)
iT = initTensor(0., 3, 3)
print "Thus, iT="
for i in range(0, len(identity_matrix)):
for j in range(0, len(identity_matrix)):
iT[i][j] = identity_matrix[i][j] - nXn[i][j]
print iT
return iT
#Isotropic transverse
def generate_EL_tensor( axis ):
print "====================================================================="
print "Determining EL:"
print "AXIS for transverse isotropy is", axis
n = initTensor(0., 3)
for i in range(0, len(n)):
if (i == axis):
n[i] = 1.
#EL = n X n X n X n
EL = initTensor(0., 3, 3, 3, 3)
for i in range( len( EL[0][0][0] ) ):
for j in range( len( EL[0][0][0] ) ):
for k in range( len( EL[0][0][0] ) ):
for l in range( len( EL[0][0][0] ) ):
EL[i][j][k][l]=n[i]*n[j]*n[k]*n[l]
print "Thus, EL in voigt notations:"
EL_voigt = tensor4_to_voigt4( EL )
for i in range(0, len(EL_voigt)):
print EL_voigt[i]
return EL
def generate_JT_tensor( iT ):
print "====================================================================="
print "Determining JT:"
#EL = n X n X n X n
JT = initTensor(0., 3, 3, 3, 3)
for i in range( len( JT[0][0][0] ) ):
for j in range( len( JT[0][0][0] ) ):
for k in range( len( JT[0][0][0] ) ):
for l in range( len( JT[0][0][0] ) ):
JT[i][j][k][l]=(1./2.)*iT[i][j]*iT[k][l]
print "Thus, JT in voigt notations:"
JT_voigt = tensor4_to_voigt4( JT )
for i in range(0, len(JT_voigt)):
print JT_voigt[i]
return JT
def generate_IT_matrix( axis ):
print "====================================================================="
print "Determining IT:"
print "AXIS for transverse isotropy is", axis
IT = initTensor(0., 6, 6)
for i in range(0, 3):
for j in range(0, 3):
if ( i == j) and (axis != i):
IT[i][j] = 1.
if (axis == 0):
IT[3][3] = 1.
if (axis == 1):
IT[4][4] = 1.
if (axis == 2):
IT[5][5] = 1.
print "Thus, IT, which is a matri(6X6):"
for i in range(0, len(IT)):
print IT[i]
return IT
def generate_KE_tensor( axis, iT_matrix ):
print "====================================================================="
print "Determining KE:"
n = initTensor(0, 3)
for i in range(0, len(n)):
if (i == axis):
n[i] = 1.
KE = initTensor(0., 3, 3, 3, 3)
for i in range( len( KE[0][0][0] ) ):
for j in range( len( KE[0][0][0] ) ):
for k in range( len( KE[0][0][0] ) ):
for l in range( len( KE[0][0][0] ) ):
KE[i][j][k][l] = (1./6.)*(2.*n[i]*n[j] - iT_matrix[i][j])*( 2.*n[k]*n[l]-iT_matrix[k][l] )
print "Thus, KE in voigt notations:"
KE_voigt = tensor4_to_voigt4( KE )
for i in range(0, len(KE_voigt)):
print KE_voigt[i]
return KE
def generate_KT_tensor( IT_matrix, JT_tensor ):
print "====================================================================="
print "Determining KT:"
IT_tensor = voigt4_to_tensor4( IT_matrix )
KT_tensor = initTensor(0., 3, 3, 3, 3)
for i in range( len( KT_tensor[0][0][0] ) ):
for j in range( len( KT_tensor[0][0][0] ) ):
for k in range( len( KT_tensor[0][0][0] ) ):
for l in range( len( KT_tensor[0][0][0] ) ):
KT_tensor[i][j][k][l] = IT_tensor[i][j][k][l] - JT_tensor[i][j][k][l]
print "Thus, KT in voigt notations:"
KT_voigt = tensor4_to_voigt4( KT_tensor )
for i in range(0, len(KT_voigt)):
print KT_voigt[i]
return KT_tensor
def generate_KL_tensor( KT, KE ):
print "====================================================================="
print "Determining KL:"
K = generate_K_tensor4()
KL_tensor = initTensor(0., 3, 3, 3, 3)
for i in range( len( KL_tensor[0][0][0] ) ):
for j in range( len( KL_tensor[0][0][0] ) ):
for k in range( len( KL_tensor[0][0][0] ) ):
for l in range( len( KL_tensor[0][0][0] ) ):
KL_tensor[i][j][k][l] = K[i][j][k][l] - KT[i][j][k][l] - KE[i][j][k][l]
print "Thus, KL in voigt notations:"
KL_voigt = tensor4_to_voigt4( KL_tensor )
for i in range(0, len(KL_voigt)):
print KL_voigt[i]
return KL_tensor
def generate_F_tensor( axis, iT_matrix):
print "====================================================================="
print "Determining F:"
n = initTensor(0, 3)
for i in range(0, len(n)):
if (i == axis):
n[i] = 1.
F_tensor = initTensor(0, 3, 3, 3, 3)
for i in range( len( F_tensor[0][0][0] ) ):
for j in range( len( F_tensor[0][0][0] ) ):
for k in range( len( F_tensor[0][0][0] ) ):
for l in range( len( F_tensor[0][0][0] ) ):
F_tensor[i][j][k][l]=sqrt(2)/2.*(iT_matrix[i][j]*n[k]*n[l]);
print "Thus, F in voigt notations:"
F_voigt = tensor4_to_voigt4( F_tensor )
for i in range(0, len(F_voigt)):
print F_voigt[i]
return F_tensor