-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVulnBaseDistribution.java
267 lines (239 loc) · 9.06 KB
/
VulnBaseDistribution.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.nd4j.linalg.api.rng.distribution;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.solvers.UnivariateSolverUtils;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.nd4j.linalg.api.iter.NdIndexIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.rng.Random;
import org.nd4j.linalg.factory.Nd4j;
import java.util.Iterator;
public abstract class BaseDistribution implements Distribution {
protected Random random;
protected double solverAbsoluteAccuracy;
public BaseDistribution(Random rng) {
this.random = rng;
}
public BaseDistribution() {
this(Nd4j.getRandom());
}
/**
* For a random variable {@code X} whose values are distributed according
* to this distribution, this method returns {@code P(x0 < X <= x1)}.
*
* @param x0 Lower bound (excluded).
* @param x1 Upper bound (included).
* @return the probability that a random variable with this distribution
* takes a value between {@code x0} and {@code x1}, excluding the lower
* and including the upper endpoint.
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException if {@code x0 > x1}.
* <p/>
* The default implementation uses the identity
* {@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}
* @since 3.1
*/
public double probability(double x0, double x1) {
if (x0 > x1) {
throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true);
}
return cumulativeProbability(x1) - cumulativeProbability(x0);
}
/**
* {@inheritDoc}
* <p/>
* The default implementation returns
* <ul>
* <li>{@link #getSupportLowerBound()} for {@code p = 0},</li>
* <li>{@link #getSupportUpperBound()} for {@code p = 1}.</li>
* </ul>
*/
@Override
public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
/*
* IMPLEMENTATION NOTES
* --------------------
* Where applicable, use is made of the one-sided Chebyshev inequality
* to bracket the root. This inequality states that
* P(X - mu >= k * sig) <= 1 / (1 + k^2),
* mu: mean, sig: standard deviation. Equivalently
* 1 - P(X < mu + k * sig) <= 1 / (1 + k^2),
* F(mu + k * sig) >= k^2 / (1 + k^2).
*
* For k = sqrt(p / (1 - p)), we find
* F(mu + k * sig) >= p,
* and (mu + k * sig) is an upper-bound for the root.
*
* Then, introducing Y = -X, mean(Y) = -mu, sd(Y) = sig, and
* P(Y >= -mu + k * sig) <= 1 / (1 + k^2),
* P(-X >= -mu + k * sig) <= 1 / (1 + k^2),
* P(X <= mu - k * sig) <= 1 / (1 + k^2),
* F(mu - k * sig) <= 1 / (1 + k^2).
*
* For k = sqrt((1 - p) / p), we find
* F(mu - k * sig) <= p,
* and (mu - k * sig) is a lower-bound for the root.
*
* In cases where the Chebyshev inequality does not apply, geometric
* progressions 1, 2, 4, ... and -1, -2, -4, ... are used to bracket
* the root.
*/
if (p < 0.0 || p > 1.0) {
throw new OutOfRangeException(p, 0, 1);
}
double lowerBound = getSupportLowerBound();
if (p == 0.0) {
return lowerBound;
}
double upperBound = getSupportUpperBound();
if (p == 1.0) {
return upperBound;
}
final double mu = getNumericalMean();
final double sig = FastMath.sqrt(getNumericalVariance());
final boolean chebyshevApplies;
chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) || Double.isInfinite(sig) || Double.isNaN(sig));
if (lowerBound == Double.NEGATIVE_INFINITY) {
if (chebyshevApplies) {
lowerBound = mu - sig * FastMath.sqrt((1. - p) / p);
} else {
lowerBound = -1.0;
while (cumulativeProbability(lowerBound) >= p) {
lowerBound *= 2.0;
}
}
}
if (upperBound == Double.POSITIVE_INFINITY) {
if (chebyshevApplies) {
upperBound = mu + sig * FastMath.sqrt(p / (1. - p));
} else {
upperBound = 1.0;
while (cumulativeProbability(upperBound) < p) {
upperBound *= 2.0;
}
}
}
final UnivariateFunction toSolve = new UnivariateFunction() {
public double value(final double x) {
return cumulativeProbability(x) - p;
}
};
double x = UnivariateSolverUtils.solve(toSolve, lowerBound, upperBound, getSolverAbsoluteAccuracy());
if (!isSupportConnected()) {
/* Test for plateau. */
final double dx = getSolverAbsoluteAccuracy();
if (x - dx >= getSupportLowerBound()) {
double px = cumulativeProbability(x);
if (cumulativeProbability(x - dx) == px) {
upperBound = x;
while (upperBound - lowerBound > dx) {
final double midPoint = 0.5 * (lowerBound + upperBound);
if (cumulativeProbability(midPoint) < px) {
lowerBound = midPoint;
} else {
upperBound = midPoint;
}
}
return upperBound;
}
}
}
return x;
}
/**
* Returns the solver absolute accuracy for inverse cumulative computation.
* You can override this method in order to use a Brent solver with an
* absolute accuracy different from the default.
*
* @return the maximum absolute error in inverse cumulative probability estimates
*/
protected double getSolverAbsoluteAccuracy() {
return solverAbsoluteAccuracy;
}
/**
* {@inheritDoc}
*/
@Override
public void reseedRandomGenerator(long seed) {
random.setSeed(seed);
}
/**
* {@inheritDoc}
* <p/>
* The default implementation uses the
* <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">
* inversion method.
* </a>
*/
@Override
public double sample() {
return inverseCumulativeProbability(random.nextDouble());
}
/**
* {@inheritDoc}
* <p/>
* The default implementation generates the sample by calling
* {@link #sample()} in a loop.
*/
@Override
public double[] sample(long sampleSize) {
if (sampleSize <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize);
}
double[] out = new double[(int) sampleSize];
for (int i = 0; i < sampleSize; i++) {
out[i] = sample();
}
return out;
}
/**
* {@inheritDoc}
*
* @return zero.
* @since 3.1
*/
@Override
public double probability(double x) {
return 0d;
}
@Override
public INDArray sample(int[] shape) {
INDArray ret = Nd4j.create(shape);
return sample(ret);
}
@Override
public INDArray sample(long[] shape) {
INDArray ret = Nd4j.create(shape);
return sample(ret);
}
@Override
public INDArray sample(INDArray target) {
Iterator<long[]> idxIter = new NdIndexIterator(target.shape()); //For consistent values irrespective of c vs. fortran ordering
long len = target.length();
for (long i = 0; i < len; i++) {
target.putScalar(idxIter.next(), sample());
}
return target;
}
}