forked from QiujieDong/Laplacian2Mesh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_seg.py
289 lines (223 loc) · 11 KB
/
train_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import argparse
import tqdm
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torchmetrics import Accuracy
from network.Net_seg import Net, init_weights
from dataset.base_dataset import BaseDataset
from util.utils import same_seed
from util.utils import RunningAverage
from util.utils import save_logging
from util.utils import segmentation_loss
from util.utils import warm_up_with_cosine_lr
from util.utils import faces_label
import wandb
import matplotlib
# display error, if we use plt.savefig() in Linux。using matplotlib.use('Agg') to solve the problem.
matplotlib.use('Agg')
# os.environ["CUDA_VISIBLE_DEVICES"] = "4"
def train(args, net, train_dl, weight_train, writer, epoch):
net.train()
preds = []
labels = []
train_loss_avg = RunningAverage()
train_acc_avg = RunningAverage()
accuracy = Accuracy()
with tqdm.tqdm(total=len(train_dl)) as t:
for j, (datas, gt) in enumerate(train_dl):
# load train data
level_0 = datas['levels'][0].to(args.device)
level_1 = datas['levels'][1].to(args.device)
level_2 = datas['levels'][2].to(args.device)
c_1 = datas['c'][0].to(args.device)
c_2 = datas['c'][1].to(args.device)
c_3 = datas['c'][2].to(args.device)
final_mat = datas['final_mat'].to(args.device)
# load ground truth
gt = gt.to(args.device)
# training from the dataset
pred = net(level_0, level_1, level_2, c_1, c_2, c_3, final_mat)
# computing loss
optimizer.zero_grad()
loss_all = 0
for i in range(pred.shape[0]):
loss = segmentation_loss(pred[i], gt[i], datas['mesh_path'][i], weight=weight_train, device=args.device,
loss_rate=args.loss_rate, bandwidth=args.bandwidth)
if i != pred.shape[0] - 1:
loss.backward(retain_graph=True)
else:
loss.backward()
loss_all += loss.item()
del loss
torch.cuda.empty_cache()
optimizer.step()
# predicting pre-vertex labels
pred_label = F.log_softmax(pred, dim=2)
preds.append(pred_label.cpu())
labels.append(gt.cpu())
# computing the accuracy
acc = 0
for i in range(pred.shape[0]):
acc += accuracy(pred_label[i][gt[i] != -1].cpu(), gt[i][gt[i] != -1].cpu()).item()
loss_all /= pred.shape[0]
acc /= pred.shape[0]
train_loss_avg.update(loss_all)
train_acc_avg.update(acc)
t.set_postfix(loss='{:05.4f}'.format(train_loss_avg()))
t.update()
del level_0, level_1, level_2, c_1, c_2, final_mat, c_3
torch.cuda.empty_cache()
# tensorboard log: train
writer.add_scalar('Accuracy/train_vertices', train_acc_avg(), epoch)
writer.add_scalar('Loss/train_vertices', train_loss_avg(), epoch)
return train_loss_avg(), train_acc_avg()
def test(args, net, test_dl, weight_test, writer=None, epoch=None):
net.eval()
preds = []
labels = []
test_loss_avg = RunningAverage()
test_acc_avg = RunningAverage()
test_vertex_acc_avg = RunningAverage()
accuracy = Accuracy()
with torch.no_grad():
for j, (datas, gt, gt_face, vf) in enumerate(test_dl):
# load test data
level_0 = datas['levels'][0].to(args.device)
level_1 = datas['levels'][1].to(args.device)
level_2 = datas['levels'][2].to(args.device)
c_1 = datas['c'][0].to(args.device)
c_2 = datas['c'][1].to(args.device)
c_3 = datas['c'][2].to(args.device)
final_mat = datas['final_mat'].to(args.device)
# load ground truth
gt = gt.to(args.device)
pred = net(level_0, level_1, level_2, c_1, c_2, c_3, final_mat)
pred_label = F.log_softmax(pred, dim=2)
preds.append(pred_label.cpu())
labels.append(gt.cpu())
acc = 0
acc_vertex = 0
loss_all = 0
# transform the gt of vertices to faces
for i in range(vf.shape[0]):
vf_labels = np.zeros(
(gt_face[i][gt_face[i] != -1].shape[0], 10)) # max_dim=10 > the number of the classes
for vertex, faces in enumerate(vf[i]):
for f in faces:
if f == -1:
break
vf_labels[f, np.argmax(pred_label[i, vertex].cpu()).item()] += 1
pred_face_labels = torch.from_numpy(np.argmax(vf_labels, axis=1))
# acc for per-face
acc += accuracy(pred_face_labels, gt_face[i][gt_face[i] != -1]).item()
# acc for per-vertex
acc_vertex += accuracy(pred_label[i][gt[i] != -1].cpu(), gt[i][gt[i] != -1].cpu()).item()
loss_all += segmentation_loss(pred[i], gt[i], datas['mesh_path'][i], weight=weight_test,
device=args.device, loss_rate=args.loss_rate,
bandwidth=args.bandwidth).item()
# visualizing face labels
if args.mode == 'test':
faces_label(datas['mesh_path'][i], pred_face_labels, args.name, args.num_classes)
loss_all /= pred.shape[0]
acc /= pred.shape[0]
acc_vertex /= pred.shape[0]
test_loss_avg.update(loss_all)
test_acc_avg.update(acc)
test_vertex_acc_avg.update(acc_vertex)
del level_0, level_1, level_2, c_1, c_2, final_mat, c_3
torch.cuda.empty_cache()
if args.mode == 'train':
# tensorboard log: test
writer.add_scalar('Accuracy/val_faces', test_acc_avg(), epoch)
writer.add_scalar('Accuracy/val_vertices', test_vertex_acc_avg(), epoch)
writer.add_scalar('Loss/val_vertices', test_loss_avg(), epoch)
return test_loss_avg(), test_acc_avg()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', choices=['train', 'test'], default='train')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--num_workers', type=int, default=20)
parser.add_argument('--seed', type=int, default=40938661)
parser.add_argument('--prefetch_factor', type=int, default=2)
parser.add_argument('--epochs', type=int, default=3000)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--lr', type=float, default=3e-3)
parser.add_argument('--scheduler_mode', choices=['CosWarm', 'MultiStep', 'Warmup'], default='CosWarm')
parser.add_argument('--scheduler_T0', type=int, default=30)
parser.add_argument('--scheduler_eta_min', type=float, default=3e-7)
parser.add_argument('--warm_up_T_max', type=int, default=60)
parser.add_argument('--warm_up_epochs', type=int, default=20)
parser.add_argument('--weight_decay', type=float, default=0.3)
parser.add_argument('--amsgrad', action='store_true')
parser.add_argument('--loss_rate', type=float, default=5e-3)
parser.add_argument('--bandwidth', type=float, default=1.0)
parser.add_argument('--num_classes', type=int, default=8)
parser.add_argument('--num_inputs', nargs='+', default=[512, 128, 32], type=int, help='Multi-resolution input')
parser.add_argument('--data_path', type=str, default='data/noise_data')
parser.add_argument('--name', type=str, default='humanbody_input512_128_32_batchSize128_T50_lossRate5e3')
args = parser.parse_args()
print(args)
# setting the seed
same_seed(args.seed)
print('Load Dataset...')
base_dataset = BaseDataset(args)
if args.mode == 'train':
train_dl, test_dl, weight_train, weight_test = base_dataset.segDataset()
else:
test_dl, weight_test = base_dataset.segDataset()
# define the Net
net = Net(args.num_classes).to(args.device)
# path to save the checkpoints
if not os.path.exists(os.path.join('checkpoints', args.name)):
os.makedirs(os.path.join('checkpoints', args.name))
# path to save the visualization results
if args.mode == 'test' and (not os.path.exists(os.path.join('visualization_result', args.name))):
os.makedirs(os.path.join('visualization_result', args.name))
min_val_loss = np.inf
max_val_acc = -np.inf
if args.mode == 'train':
# Use wandb to visualize the training process
wandb.init(project='lap_seg', entity='laplacian2mesh', config=args, name=args.name, sync_tensorboard=True)
wandb.watch(net, log="gradients", log_graph=False)
# tensorboard
writer = SummaryWriter(os.path.join('checkpoints', args.name, 'log_dir'))
# Network initialization
init_weights(net)
optimizer = optim.AdamW(net.parameters(), lr=args.lr, weight_decay=args.weight_decay, amsgrad=args.amsgrad)
# select scheduler mode
scheduler = None
if args.scheduler_mode == 'CosWarm':
scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=args.scheduler_T0, T_mult=2,
eta_min=args.scheduler_eta_min, verbose=True)
elif args.scheduler_mode == 'MultiStep':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[30, 60, 100], gamma=0.1, verbose=True)
elif args.scheduler_mode == 'Warmup':
warmup_cosine_lr = warm_up_with_cosine_lr(args.warm_up_epochs, args.scheduler_eta_min, args.lr,
args.epochs, args.warm_up_T_max)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_cosine_lr)
# training
for epoch in tqdm.trange(args.epochs):
train_loss, train_acc = train(args, net, train_dl, weight_train, writer, epoch)
test_loss, test_acc = test(args, net, test_dl, weight_test, writer, epoch)
writer.add_scalar('Utils/lr_scheduler', scheduler.get_last_lr()[0], global_step=epoch)
scheduler.step()
save_logging(args, test_loss, test_acc, epoch, net, train_loss, train_acc, save_name='last')
# save best loss
if min_val_loss > test_loss:
min_val_loss = test_loss
save_logging(args, test_loss, test_acc, epoch, net, train_loss, train_acc, save_name='best_loss')
# save best acc
if max_val_acc < test_acc:
max_val_acc = test_acc
save_logging(args, test_loss, test_acc, epoch, net, train_loss, train_acc, save_name='best_acc')
writer.close()
# test
else:
net.load_state_dict(torch.load(os.path.join('checkpoints', args.name, 'best_acc.pth')))
test_loss, test_acc = test(args, net, test_dl, weight_test)
save_logging(args, test_loss, test_acc)