-
Notifications
You must be signed in to change notification settings - Fork 496
/
Copy pathavl_tree.c
203 lines (166 loc) · 5.1 KB
/
avl_tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// Implements an AVL tree in C
#include <stdlib.h>
#include <stdio.h>
#define max(a,b) (((a)>(b))?(a):(b))
typedef struct AVLNode {
struct AVLNode* left; // left child node
struct AVLNode* right; // right child node
struct AVLNode* parent; // parent node
int value; // integer type data
int height; // current height in the tree
} AVLNode;
typedef struct AVLTree {
struct AVLNode* root; // the tree's root node
int size; // the tree's size
} AVLTree;
// Adjusts the height of the given node respective to its current position
void adjust_height(AVLNode* avln) {
if (avln->left == NULL && avln->right == NULL) {
avln->height = 1;
} else if (avln->left == NULL) {
avln->height = 1 + avln->right->height;
} else if (avln->right == NULL) {
avln->height = 1 + avln->left->height;
} else {
avln->height = 1 + max(avln->left->height, avln->right->height);
}
}
// Performs a left rotation on the given node in the given tree
void rotate_left(AVLTree* avlt, AVLNode* avln) {
AVLNode* y = avln->right;
avln->right = y->left;
if (y->left != NULL) {
y->left->parent = avln;
}
y->parent = avln->parent;
if (avln->parent == NULL) {
avlt->root = y;
} else if (avln->value == avln->parent->left->value) {
avln->parent->left = y;
} else {
avln->parent->right = y;
}
y->left = avln;
avln->parent = y;
adjust_height(avln);
adjust_height(y);
}
// Performs a right rotation on the given node in the given tree
void rotate_right(AVLTree* avlt, AVLNode* avln) {
AVLNode* x = avln->left;
avln->left = x->right;
if (x->right != NULL) {
x->right->parent = avln;
}
x->parent = avln->parent;
if (avln->parent == NULL) {
avlt->root = x;
} else if (avln->value == avln->parent->right->value) {
avln->parent->right = x;
} else {
avln->parent->left = x;
}
x->right = avln;
avln->parent = x;
adjust_height(avln);
adjust_height(x);
}
// Helper method to get the height of the given node
// Used to easily implement the required NULL-checks
int get_height(AVLNode* avln) {
if (avln == NULL) {
return 0;
} else {
return avln->height;
}
}
// Helper method to get the height of the node to the left
// Used to easily implement the required NULL-checks
int get_left_height(AVLNode* avln) {
if (avln == NULL || avln->left == NULL) {
return 0;
} else {
return avln->left->height;
}
}
// Helper method to get the height of the node to the right
// Used to easily implement the required NULL-checks
int get_right_height(AVLNode* avln) {
if (avln == NULL || avln->right == NULL) {
return 0;
} else {
return avln->right->height;
}
}
// Balances the sub-tree below the given node
void balance(AVLTree* avlt, AVLNode* avln) {
// check if the tree is left-heavy
if (get_height(avln->left) > get_height(avln->right) + 1) {
if (get_left_height(avln->left) < get_right_height(avln->left)) {
rotate_left(avlt, avln->left);
}
rotate_right(avlt, avln);
// check if the tree is right-heavy
} else if (get_height(avln->right) > get_height(avln->left) + 1) {
if (get_right_height(avln->right) < get_left_height(avln->right)) {
rotate_right(avlt, avln->right);
}
rotate_left(avlt, avln);
}
}
// Recursive method to insert a value into the tree, NOT to be used by the outside
void insert_value_recursive(AVLTree* avlt, AVLNode** avln, AVLNode* parent, int value) {
// If the given node is NULL (i.e. the tree is empty or we have reached a leaf node)
if (*avln == NULL) {
*avln = malloc(sizeof(AVLNode));
(*avln)->left = NULL;
(*avln)->right = NULL;
(*avln)->parent = parent;
(*avln)->value = value;
(*avln)->height = 1;
avlt->size++;
// If the the given value is lower than the currently viewed node, view the left child
} else if (value < (*avln)->value) {
insert_value_recursive(avlt, &(*avln)->left, *avln, value);
// If the the given value is greater than the currently viewed node, view the right child
} else if (value > (*avln)->value) {
insert_value_recursive(avlt, &(*avln)->right, *avln, value);
// If the the given value is equal to the currently viewed node, return because we don't allow double entries
} else {
return;
}
// Determine the height of the newly created node
(*avln)->height = 1 + max(get_height((*avln)->left), get_height((*avln)->right));
// Re-balance the node to check for possibly needed rotations
balance(avlt, *avln);
}
// Inserts the given value into the tree
void insert_value(AVLTree* avlt, int value) {
// Use the recursive function to allow the function to correctly position the newly created node
insert_value_recursive(avlt, &avlt->root, NULL, value);
}
void traverse_in_order(AVLNode* avln) {
if (avln != NULL) {
// traverse the left sub-tree first
traverse_in_order(avln->left);
// print the current node's value
printf("%d ", avln->value);
// traverse the right sub-tree later
traverse_in_order(avln->right);
}
}
int main() {
// create a new AVLTree
AVLTree avlt;
avlt.root = NULL;
avlt.size = 0;
insert_value(&avlt, 2);
insert_value(&avlt, 5);
insert_value(&avlt, 7);
insert_value(&avlt, 3);
insert_value(&avlt, 10);
insert_value(&avlt, 1);
insert_value(&avlt, 20);
traverse_in_order((&avlt)->root);
printf("\n");
}