-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmulti_training.py
510 lines (437 loc) · 25.6 KB
/
multi_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import matplotlib
matplotlib.use('agg')# to avoid GUI request on clusters
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
import socket
import absl
import json
import time
import contextlib
import datetime as dt
import numpy as np
import pickle as pkl
import tensorflow as tf
import load_sparse
import classification_tools
import toolkit
import stim_dataset
import simmanager
import models
def main(_):
flags = absl.app.flags.FLAGS
results_dir = os.path.join(flags.results_dir, 'multi_training')
os.makedirs(results_dir, exist_ok=True)
per_replica_batch_size = flags.batch_size
n_input = 17400
# load firing rates
with open(os.path.join(flags.data_dir, 'garrett_firing_rates.pkl'), 'rb') as f:
firing_rates = pkl.load(f)
sorted_firing_rates = np.sort(firing_rates)
percentiles = (np.arange(firing_rates.shape[-1]) + 1).astype(np.float32) / firing_rates.shape[-1]
rate_rd = np.random.RandomState(seed=flags.seed)
x_rand = rate_rd.uniform(size=flags.neurons)
target_firing_rates = np.sort(np.interp(x_rand, percentiles, sorted_firing_rates))
# physical_devices = tf.config.list_physical_devices('GPU')
# try:
# for dev in physical_devices:
# tf.config.experimental.set_memory_growth(dev, True)
# except:
# # Invalid device or cannot modify virtual devices once initialized.
# pass
dtype = tf.float32
if socket.gethostname().count('nvcluster') > 0 or socket.gethostname().count('pCluster') > 0:
n_workers, task_id = 1, 0
n_gpus_per_worker = 1
strategy = tf.distribute.MirroredStrategy(cross_device_ops=tf.distribute.ReductionToOneDevice(reduce_to_device="cpu:0"))
else:
n_workers, task_id = toolkit.set_tf_config_from_slurm(port=flags.port)
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(
communication=tf.distribute.experimental.CollectiveCommunication.NCCL)
n_gpus_per_worker = int(strategy.num_replicas_in_sync / n_workers)
is_master = task_id < .5
print(f'worker {task_id + 1} / {n_workers}')
# tasks = ['garrett', 'evidence', 'vcd_grating', 'ori_diff', '10class']
# for uneven batch distribution
if task_id < 8:
task_name = 'garrett'
elif task_id < 16:
task_name = 'evidence'
elif task_id < 24:
task_name = 'vcd_grating'
elif task_id < 32:
task_name = 'ori_diff'
elif task_id < 40:
task_name = '10class'
# task_name = tasks[task_id % len(tasks)] # this for even distribution
global_batch_size = per_replica_batch_size * strategy.num_replicas_in_sync
if task_name == '10class':
n_output = 10
else:
n_output = 2 #although the garrat and vcd_grating, ori_diff only need one readout population but it has another pesudo ouput (thresh)
# load column model of Billeh et al
if flags.caching:
load_fn = load_sparse.cached_load_billeh
else:
load_fn = load_sparse.load_billeh
input_population, network, bkg_weights = load_fn(
n_input=n_input, n_neurons=flags.neurons, core_only=flags.core_only, data_dir=flags.data_dir,
seed=flags.seed, connected_selection=flags.connected_selection, n_output=n_output,
neurons_per_output=flags.neurons_per_output, use_rand_ini_w=flags.use_rand_ini_w,
use_dale_law=flags.use_dale_law, use_only_one_type=flags.use_only_one_type,
use_rand_connectivity=flags.use_rand_connectivity, scale_w_e=flags.scale_w_e,
localized_readout=flags.localized_readout, use_uniform_neuron_type=flags.use_uniform_neuron_type)
noise_scales = [float(a) for a in flags.scale.split(',') if a != '']
with strategy.scope():
model = classification_tools.create_model(
network, input_population, bkg_weights, seq_len=flags.seq_len, n_input=n_input,
n_output=n_output, dtype=dtype,
input_weight_scale=flags.input_weight_scale,
dampening_factor=flags.dampening_factor, gauss_std=flags.gauss_std,
train_recurrent=flags.train_recurrent,
train_input=flags.train_input, lRout_pop='all', use_decoded_noise=flags.use_decoded_noise,
neuron_output=flags.neuron_output, L2_factor=0, return_state=True,
max_delay=flags.max_delay, batch_size=flags.batch_size,
output_mode=task_name, down_sampled_decode_noise_path=os.path.join(flags.data_dir, 'additive_noise.mat'),
neuron_model=flags.neuron_model, use_dale_law=flags.use_dale_law, scale=noise_scales,
)
model.build((flags.batch_size, flags.seq_len, n_input))
rsnn_layer = model.get_layer('rsnn')
rec_weight_regularizer = models.StiffRegularizer(flags.recurrent_weight_regularization,
rsnn_layer.cell.recurrent_weight_values)
rate_distribution_regularizer = models.SpikeRateDistributionRegularization(target_firing_rates, flags.rate_cost)
prediction_layer = model.get_layer('prediction')
extractor_model = tf.keras.Model(inputs=model.inputs,
outputs=[rsnn_layer.output, model.output, prediction_layer.output])
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False, reduction=tf.keras.losses.Reduction.NONE)
def compute_loss(_l, _p, _w):
per_example_loss = loss_object(_l, _p, sample_weight=_w) * strategy.num_replicas_in_sync / tf.reduce_sum(_w)
rec_weight_loss = rec_weight_regularizer(rsnn_layer.cell.recurrent_weight_values)
return tf.nn.compute_average_loss(per_example_loss, global_batch_size=global_batch_size) + rec_weight_loss
optimizer = tf.keras.optimizers.Adam(flags.learning_rate, epsilon=1e-11)
def get_dataset_fn(is_test=False, _steps_per_epoch=80):
def _f(input_context):
if task_name == 'garrett':
if is_test:
path = os.path.join(flags.data_dir, '../alternate_small_stimuli.pkl')
n_images = 8
else:
path = os.path.join(flags.data_dir, '../many_small_stimuli.pkl')
n_images = 40
delays = [int(a) for a in flags.delays.split(',') if a != '']
if flags.from_lgn:
_data_set = stim_dataset.generate_data_set_continuing(
path, seq_len=flags.seq_len, batch_size=per_replica_batch_size * n_gpus_per_worker,
examples_in_epoch=int(2 * _steps_per_epoch * flags.seq_len / np.min(delays)),
p_reappear=flags.p_reappear, n_images=n_images, current_input=flags.current_input,
im_slice=flags.im_slice, delay=delays[0]).unbatch().batch(per_replica_batch_size).prefetch(1)
else:
_data_set = stim_dataset.generate_VCD_NI_from_path(path=os.path.join(flags.data_dir, '../575_train_img_100x174.h5'),
intensity=flags.sti_intensity, im_slice=flags.im_slice, pre_delay=50, post_delay=150, p_reappear=0.5,
from_lgn=False, pre_chunks=4, resp_chunks=1, post_chunks=1, current_input=True).batch(per_replica_batch_size).prefetch(1)
elif task_name == 'vcd_grating':
# seq_len must be 600 to use this
_data_set = stim_dataset.generate_VCD_orientation(from_lgn=flags.from_lgn, intensity=flags.sti_intensity, im_slice=100, pre_delay=50, post_delay=150, p_reappear=flags.p_reappear, current_input=True)
_data_set = _data_set.batch(per_replica_batch_size).prefetch(1)
elif task_name == 'evidence':
if flags.from_lgn:
_data_set = stim_dataset.generate_evidence_accumulation_via_LGN(file_name=os.path.join(flags.data_dir, '../EA_LGN.h5'), seq_len=flags.seq_len, pause=250, n_cues=5, cue_len=50, interval_len=10, recall_len=50)
_data_set = _data_set.batch(per_replica_batch_size).prefetch(1)
else:
path = os.path.join(flags.data_dir, '../evidence_accumulation_data.pkl')
_data_set = stim_dataset.generate_evidence_accumulation(path, batch_size=per_replica_batch_size, seq_len=flags.seq_len,
n_examples_per_epoch=int(global_batch_size / n_workers) * _steps_per_epoch).batch(per_replica_batch_size).prefetch(1)
elif task_name == 'ori_diff':
_data_set = stim_dataset.generate_fine_orientation_discrimination(from_lgn=flags.from_lgn, intensity=flags.sti_intensity, im_slice=flags.im_slice, pre_delay=flags.pre_delay, post_delay=flags.post_delay,
pre_chunks=flags.pre_chunks, resp_chunks=1, post_chunks=flags.post_chunks, current_input=True).batch(per_replica_batch_size).prefetch(1)
elif task_name == '10class':
if is_test:
n_examples = 9984
else:
n_examples = 49984 #int(50000/64)
_data_set = stim_dataset.generate_pure_classification_data_set_from_generator(
data_usage=int(is_test),intensity=flags.sti_intensity,im_slice=flags.im_slice,
pre_delay=flags.pre_delay, post_delay=flags.post_delay, current_input=flags.current_input,
dataset='mnist', pre_chunks=flags.pre_chunks, resp_chunks=1, from_lgn=flags.from_lgn,
post_chunks=flags.post_chunks).take(n_examples).batch(per_replica_batch_size).shard(8, input_context.input_pipeline_id - 32).prefetch(1) # task_id = input_context.input_pipeline_id, [16,23] is 10class
# post_chunks=flags.post_chunks).take(n_examples).batch(per_replica_batch_size).shard(8, input_context.input_pipeline_id//3).prefetch(8) # 49984=int(50000/64); 8 nodes for each task, so divide it to 8 parts; total 3 tasks, so every 3 task_ids will choose the correct part
return _data_set
return _f
zero_state = rsnn_layer.cell.zero_state(flags.batch_size)
with strategy.scope():
state_variables = tf.nest.map_structure(lambda a: tf.Variable(
a, trainable=False, synchronization=tf.VariableSynchronization.ON_READ
), zero_state)
train_loss = tf.keras.metrics.Mean()
val_loss = tf.keras.metrics.Mean()
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
val_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
train_firing_rate = tf.keras.metrics.Mean()
val_firing_rate = tf.keras.metrics.Mean()
train_rate_loss = tf.keras.metrics.Mean()
val_rate_loss = tf.keras.metrics.Mean()
train_voltage_loss = tf.keras.metrics.Mean()
val_voltage_loss = tf.keras.metrics.Mean()
def reset_train_metrics():
train_loss.reset_states(), train_accuracy.reset_states(), train_firing_rate.reset_states()
train_rate_loss.reset_states(), train_voltage_loss.reset_states()
def reset_validation_metrics():
val_loss.reset_states(), val_accuracy.reset_states(), val_firing_rate.reset_states()
val_rate_loss.reset_states(), val_voltage_loss.reset_states()
def roll_out(_x, _y, _w):
_initial_state = tf.nest.map_structure(lambda _a: _a.read_value(), state_variables)
_out, _p, _ = extractor_model((_x, _initial_state))
_z, _v = _out[0]
voltage_32 = (tf.cast(_v, tf.float32) - rsnn_layer.cell.voltage_offset) / rsnn_layer.cell.voltage_scale
v_pos = tf.square(tf.nn.relu(voltage_32 - 1.))
v_neg = tf.square(tf.nn.relu(-voltage_32 + 1.))
voltage_loss = tf.reduce_mean(tf.reduce_sum(v_pos + v_neg, -1)) * flags.voltage_cost
rate_loss = rate_distribution_regularizer(_z)
classification_loss = compute_loss(_y, _p, _w)
_aux = dict(rate_loss=rate_loss, voltage_loss=voltage_loss)
_loss = classification_loss + rate_loss + voltage_loss
return _out, _p, _loss, _aux
def train_step(_x, _y, _w):
with tf.GradientTape() as tape:
_out, _p, _loss, _aux = roll_out(_x, _y, _w)
_op = train_accuracy.update_state(_y, _p, sample_weight=_w)
with tf.control_dependencies([_op]):
_op = train_loss.update_state(_loss)
_rate = tf.reduce_mean(_out[0][0])
with tf.control_dependencies([_op]):
_op = train_firing_rate.update_state(_rate)
with tf.control_dependencies([_op]):
_op = train_rate_loss.update_state(_aux['rate_loss'])
with tf.control_dependencies([_op]):
_op = train_voltage_loss.update_state(_aux['voltage_loss'])
grad = tape.gradient(_loss, model.trainable_variables)
for g, v in zip(grad, model.trainable_variables):
with tf.control_dependencies([_op]):
_op = optimizer.apply_gradients([(g, v)])
@tf.function
def distributed_train_step(_x, _y, _w):
strategy.run(train_step, args=(_x, _y, _w))
def train_step_continuing(_x, _y, _w):
with tf.GradientTape() as tape:
_out, _p, _loss, _aux = roll_out(_x, _y, _w)
_op = train_accuracy.update_state(_y, _p, sample_weight=_w)
with tf.control_dependencies([_op]):
_op = train_loss.update_state(_loss)
_rate = tf.reduce_mean(_out[0][0])
with tf.control_dependencies([_op]):
_op = train_firing_rate.update_state(_rate)
with tf.control_dependencies([_op]):
_op = train_rate_loss.update_state(_aux['rate_loss'])
with tf.control_dependencies([_op]):
_op = train_voltage_loss.update_state(_aux['voltage_loss'])
tf.nest.map_structure(lambda _a, _b: _a.assign(_b), list(state_variables), _out[1:])
# grad = tape.gradient(_loss, model.trainable_variables)
# optimizer.apply_gradients(zip(grad, model.trainable_variables))
grad = tape.gradient(_loss, model.trainable_variables)
for g, v in zip(grad, model.trainable_variables):
with tf.control_dependencies([_op]):
_op = optimizer.apply_gradients([(g, v)])
@tf.function
def distributed_train_step_continuing(_x, _y, _w):
strategy.run(train_step_continuing, args=(_x, _y, _w))
def validation_step(_x, _y, _w):
_out, _p, _loss, _aux = roll_out(_x, _y, _w)
_op = val_accuracy.update_state(_y, _p, sample_weight=_w)
with tf.control_dependencies([_op]):
_op = val_loss.update_state(_loss)
_rate = tf.reduce_mean(_out[0][0])
with tf.control_dependencies([_op]):
_op = val_firing_rate.update_state(_rate)
with tf.control_dependencies([_op]):
_op = val_rate_loss.update_state(_aux['rate_loss'])
with tf.control_dependencies([_op]):
_op = val_voltage_loss.update_state(_aux['voltage_loss'])
# tf.nest.map_structure(lambda _a, _b: _a.assign(_b), list(state_variables), _out[1:])
@tf.function
def distributed_validation_step(_x, _y, _w):
strategy.run(validation_step, args=(_x, _y, _w))
def validation_step_continuing(_x, _y, _w):
_out, _p, _loss, _aux = roll_out(_x, _y, _w)
_op = val_accuracy.update_state(_y, _p, sample_weight=_w)
with tf.control_dependencies([_op]):
_op = val_loss.update_state(_loss)
_rate = tf.reduce_mean(_out[0][0])
with tf.control_dependencies([_op]):
_op = val_firing_rate.update_state(_rate)
with tf.control_dependencies([_op]):
_op = val_rate_loss.update_state(_aux['rate_loss'])
with tf.control_dependencies([_op]):
_op = val_voltage_loss.update_state(_aux['voltage_loss'])
tf.nest.map_structure(lambda _a, _b: _a.assign(_b), list(state_variables), _out[1:])
@tf.function
def distributed_validation_step_continuing(_x, _y, _w):
strategy.run(validation_step_continuing, args=(_x, _y, _w))
def reset_state():
tf.nest.map_structure(lambda a, b: a.assign(b), state_variables, zero_state)
@tf.function
def distributed_reset_state():
strategy.run(reset_state)
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
if task_id in [0,8,16,24,32]:
sim_name = toolkit.get_random_identifier('b_')
print(f'> Results for {task_name} will be stored in {os.path.join(results_dir, sim_name)}')
cm = simmanager.SimManager(sim_name, results_dir, write_protect_dirs=False, tee_stdx_to='output.log')
else:
cm = contextlib.nullcontext()
if flags.restore_from != '':
with strategy.scope():
# checkpoint.restore(tf.train.latest_checkpoint(flags.restore_from))
checkpoint.restore(flags.restore_from)
print(f'Model parameters of {task_name} restored from {flags.restore_from}')
def compose_str(_loss, _acc, _rate, _rate_loss, _voltage_loss):
_s = f'Loss {_loss:.4f}, '
_s += f'RLoss {_rate_loss:.4f}, '
_s += f'VLoss {_voltage_loss:.4f}, '
_s += f'Accuracy {_acc:.4f}, '
_s += f'Rate {_rate:.4f}'
return _s
test_data_set = strategy.experimental_distribute_datasets_from_function(
get_dataset_fn(True, flags.val_steps))
train_data_set = strategy.experimental_distribute_datasets_from_function(
get_dataset_fn(False, flags.steps_per_epoch))
with cm:
if is_master:
step_counter = tf.Variable(0,trainable=False)
manager = tf.train.CheckpointManager(
checkpoint, directory=cm.paths.results_path, max_to_keep=100,
# keep_checkpoint_every_n_hours=2,
checkpoint_interval = 1, # save ckpt for data analysis
step_counter=step_counter
)
summary_writer = tf.summary.create_file_writer(cm.paths.results_path)
def save_model():
if is_master:
step_counter.assign_add(1)
p = manager.save()
print(f'Model saved in {p}')
with open(os.path.join(cm.paths.data_path, 'config.json'), 'w') as f:
json.dump(flags.flag_values_dict(), f, indent=4)
stop = False
t0 = time.time()
for epoch in range(flags.n_epochs):
if stop:
break
it = iter(train_data_set)
date_str = dt.datetime.now().strftime('%d-%m-%Y %H:%M')
print(f'Epoch {epoch + 1:2d}/{flags.n_epochs} @ {date_str}')
# quit()
distributed_reset_state()
for step in range(flags.steps_per_epoch):
x, y, _, w = next(it)
if task_name == 'garrett' or task_name == 'vcd_grating':
distributed_train_step_continuing(x, y, w)
else:
distributed_train_step(x, y, w)
print_str = f' Step {step + 1:2d}/{flags.steps_per_epoch}: '
print_str += compose_str(train_loss.result(), train_accuracy.result(),
train_firing_rate.result(), train_rate_loss.result(), train_voltage_loss.result())
# write_csv(time.time(), task_id, step, train_loss.result(), train_accuracy.result(),
# train_firing_rate.result(), train_rate_loss.result(), train_voltage_loss.result(), epoch, True, os.path.join(results_dir, 'new_5_tasks'))
print(print_str, end='\r')
if 0 < flags.max_time < (time.time() - t0) / 3600:
stop = True
break
print()
if stop:
print(f'[ Maximum optimization time of {flags.max_time:.2f}h reached ]')
distributed_reset_state()
test_it = iter(test_data_set)
for step in range(flags.val_steps):
x, y, _, w = next(test_it)
if task_name == 'garrett' or task_name == 'vcd_grating':
distributed_validation_step_continuing(x, y, w)
else:
distributed_validation_step(x, y, w)
print_str = ' Validation: ' + compose_str(
val_loss.result(), val_accuracy.result(), val_firing_rate.result(),
val_rate_loss.result(), val_voltage_loss.result())
print(print_str)
keys = ['train_accuracy', 'train_loss', 'train_firing_rate', 'train_rate_loss',
'train_voltage_loss', 'val_accuracy', 'val_loss',
'val_firing_rate', 'val_rate_loss', 'val_voltage_loss']
values = [a.result().numpy() for a in [train_accuracy, train_loss, train_firing_rate, train_rate_loss,
train_voltage_loss, val_accuracy, val_loss, val_firing_rate,
val_rate_loss, val_voltage_loss]]
if stop:
result = dict(
train_loss=float(train_loss.result().numpy()),
train_accuracy=float(train_accuracy.result().numpy()),
test_loss=float(val_loss.result().numpy()),
test_accuracy=float(val_accuracy.result().numpy())
)
if is_master:
save_model()
with summary_writer.as_default():
for k, v in zip(keys, values):
tf.summary.scalar(k, v, step=epoch)
if is_master and stop:
with open(os.path.join(cm.paths.results_path, 'result.json'), 'w') as f:
json.dump(result, f)
reset_train_metrics()
reset_validation_metrics()
if __name__ == '__main__':
hostname = socket.gethostname()
if hostname.count('scherr-pc') > 0:
_data_dir = '/data/allen/v1_model/GLIF_network'
_results_dir = '/data/output/billeh'
elif hostname.count('juwels') > 0:
_data_dir = '/p/project/structuretofunction/guozhang/glif_criticality/GLIF_network'
_results_dir = '/p/scratch/structuretofunction/chen/RESULTS'
else:
_data_dir = ''
_results_dir = ''
absl.app.flags.DEFINE_string('data_dir', _data_dir, '')
absl.app.flags.DEFINE_string('results_dir', _results_dir, '')
absl.app.flags.DEFINE_string('restore_from', '', '')
absl.app.flags.DEFINE_string('comment', '', '')
absl.app.flags.DEFINE_string('delays', '200,200', '')
absl.app.flags.DEFINE_string('neuron_model', 'GLIF3', '')
absl.app.flags.DEFINE_string('scale', '2,2', '')
absl.app.flags.DEFINE_float('learning_rate', .001, '')
absl.app.flags.DEFINE_float('rate_cost', .1, '')
absl.app.flags.DEFINE_float('voltage_cost', .00001, '')
absl.app.flags.DEFINE_float('dampening_factor', .5, '')
absl.app.flags.DEFINE_float('gauss_std', .28, '')
absl.app.flags.DEFINE_float('recurrent_weight_regularization', 0., '')
absl.app.flags.DEFINE_float('p_reappear', .5, '')
absl.app.flags.DEFINE_float('max_time', -1, '')
absl.app.flags.DEFINE_float('scale_w_e', -1, '')
absl.app.flags.DEFINE_float('sti_intensity', 2., '')
absl.app.flags.DEFINE_float('input_weight_scale', 1., '')
absl.app.flags.DEFINE_integer('n_epochs', 1000, '')
absl.app.flags.DEFINE_integer('batch_size', 2, '')
absl.app.flags.DEFINE_integer('neurons', 51978, '')
absl.app.flags.DEFINE_integer('seq_len', 600, '')
absl.app.flags.DEFINE_integer('im_slice', 100, '')
absl.app.flags.DEFINE_integer('seed', 3000, '')
absl.app.flags.DEFINE_integer('port', 12778, '')
absl.app.flags.DEFINE_integer('neurons_per_output', 30, '')
absl.app.flags.DEFINE_integer('steps_per_epoch', 781, '')# EA and garret dose not need this many but pure classification needs 781 = int(50000/64)
absl.app.flags.DEFINE_integer('val_steps', 156, '')# EA and garret dose not need this many but pure classification needs 156 = int(10000/64)
absl.app.flags.DEFINE_integer('max_delay', 5, '')
absl.app.flags.DEFINE_integer('n_plots', 1, '')
absl.app.flags.DEFINE_integer('pre_chunks', 3, '')
absl.app.flags.DEFINE_integer('post_chunks', 8, '') # the pure calssification task only need 1 but to make consistent with other tasks one has to make up here
absl.app.flags.DEFINE_integer('pre_delay', 50, '')
absl.app.flags.DEFINE_integer('post_delay', 450, '')
absl.app.flags.DEFINE_boolean('use_rand_connectivity', False, '')
absl.app.flags.DEFINE_boolean('use_uniform_neuron_type', False, '')
absl.app.flags.DEFINE_boolean('use_only_one_type', False, '')
absl.app.flags.DEFINE_boolean('use_dale_law', True, '')
absl.app.flags.DEFINE_boolean('caching', False, '') # if one wants to use caching, remember to update the caching function
absl.app.flags.DEFINE_boolean('core_only', False, '')
absl.app.flags.DEFINE_boolean('train_input', True, '')
absl.app.flags.DEFINE_boolean('train_recurrent', True, '')
absl.app.flags.DEFINE_boolean('connected_selection', True, '')
absl.app.flags.DEFINE_boolean('neuron_output', True, '')
absl.app.flags.DEFINE_boolean('localized_readout', True, '')
absl.app.flags.DEFINE_boolean('current_input', True, '')
absl.app.flags.DEFINE_boolean('use_rand_ini_w', False, '')
absl.app.flags.DEFINE_boolean('use_decoded_noise', True, '')
absl.app.flags.DEFINE_boolean('from_lgn', True, '')
absl.app.run(main)