-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil_output.py
229 lines (177 loc) · 7.28 KB
/
util_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import nn
from random import randint
import networkx as nx
import random
from sklearn import preprocessing
from networkx.readwrite import json_graph
import evaluate
import copy
import json
from networkx.algorithms import bipartite
import pickle
from sklearn import preprocessing
from networkx.readwrite import json_graph
import json
import pickle
from sklearn.preprocessing import StandardScaler
import copy
from sklearn.decomposition import PCA
def read_json_file(filename):
with open(filename) as f:
js_graph = json.load(f)
return json_graph.node_link_graph(js_graph)
def getnewgraph(graph_dir, num_k, sampling_freq):
top_ten_file = open(graph_dir + "_top_ten_percent.txt"+"_"+ str(num_k)+"_nbs_"+str(sampling_freq))
top_ten_file_content = top_ten_file.read()
top_tenpct_nodes = list(map(int,top_ten_file_content.split()))
print(top_tenpct_nodes)
# embedding_file = graph_dir + "_embeddings.npy"
# embeddings_ordered = np.load(embedding_file)
# embeddings_ordered = np.array(embeddings_ordered,dtype='float64')
# m,n = embeddings_ordered.shape
#
# graph_json_filename = graph_dir + "-G.json"
# main_graph = read_json_file(graph_json_filename)
embedding_file=graph_dir + "_embeddings.npy"+"_"+ str(num_k)+"_nbs_"+str(sampling_freq)+".pickle"
# embeddings_ordered = np.load(embedding_file)
# embeddings_ordered = np.array(embeddings_ordered,dtype='float64')
# m,n = embeddings_ordered.shape
#
embeddings_dict={}
with open(embedding_file, 'rb') as handle:
embeddings_dict=pickle.load(handle)
# embeddings_ordered = np.append(empty_column_for_cover, embeddings_ordered, axis=1)
graph_json_filename=graph_dir + "-G.json"
main_graph=read_json_file(graph_json_filename)
m=len(main_graph)
empty_column_for_cover=np.array([2], dtype='float64')
dict_node_scores_file_name=graph_dir+ "_node_scores_supgs"+"_"+ str(num_k)+"_nbs_"+str(sampling_freq)+".pickle"
with open(dict_node_scores_file_name, 'rb') as handle:
dict_sup_gs_scores=pickle.load(handle)
dict_node_sampled_neighbors_file_name=graph_dir + "-sampled_nbrs_for_rl.pickle"+"_"+ str(num_k)+"_nbs_"+str(sampling_freq)
with open(dict_node_sampled_neighbors_file_name, 'rb') as handle:
dict_node_sampled_neighbors =pickle.load(handle)
print("deg")
#out_deg_wt_graph = main_graph.out_degree( weight='weight')
for k, v in embeddings_dict.items():
embeddings_dict[k]=np.array([1, 1],
dtype='float64') # np.concatenate((empty_column_for_cover, embeddings_dict[k]))#np.array([1,1], dtype='float64')#empty_column_for_cover#np.concatenate((empty_column_for_cover))#, empty_column_for_cover))
embeddings_dict[k][0]=len( dict_node_sampled_neighbors[k])#main_graph.degree(k)
# embeddings_dict[k][1]= main_graph.degree(k)#dict_sup_gs_scores[k]#main_graph.degree(k)
embeddings_dict[k][1]=dict_sup_gs_scores[k]#out_deg_wt_graph[k]#dict_sup_gs_scores[k]#main_graph.degree(k)#dict_sup_gs_scores[k] # main_graph.degree(k)
#print(embeddings_dict)
scaler=StandardScaler()
temp_column_for_cover=np.ones((len(embeddings_dict), 2), dtype='float64')
i=0
dict_map_i_key={}
for key, value in embeddings_dict.items():
temp_column_for_cover[i]=value
dict_map_i_key[i]=key
i+=1
#print(embeddings_dict)
scaler.fit(temp_column_for_cover)
temp_column_for_cover_norm=None
temp_column_for_cover_norm=scaler.transform(temp_column_for_cover)
#
# pca=PCA(n_components=2)
# temp_column_for_cover_norm_pca = pca.fit_transform(temp_column_for_over_norm[:,1:])
for index, value in enumerate(temp_column_for_cover_norm):
true_node_id=dict_map_i_key[index]
embeddings_dict[true_node_id][0]=value[
0] # np.concatenate((np.array([temp_column_for_cover_norm[index][0]]),value))
embeddings_dict[true_node_id][1]=value[1]
# embeddings_dict[true_node_id][2]=value[2]
return (main_graph,embeddings_dict,m,top_tenpct_nodes,dict_node_sampled_neighbors )
def solve(graph_dir):
top_ten_file=open(graph_dir + "_top_ten_percent.txt")
top_ten_file_content=top_ten_file.read()
top_tenpct_nodes=np.array(map(int, top_ten_file_content.split()))
graph_json_filename=graph_dir + "-G.json"
main_graph=read_json_file(graph_json_filename)
m=len(main_graph)
cov = {}#[ main_graph.degree(x) ]
for node in top_tenpct_nodes:
cov[node] = main_graph.degree(node)
neighbors_chosen_till_now = set()
sol = list()
import operator
stats={'a': 1000, 'b': 3000, 'c': 100}
for step in range(0,15):
chosen_node = max(cov.iteritems(), key=operator.itemgetter(1))[0]
print("chosen node ", chosen_node)
sol.append(chosen_node)
neighbors_of_chosen_node=set(main_graph.neighbors(chosen_node))
# new_neighbors_not_in_solutions_neighbors=neighbors_of_chosen_node - neighbors_chosen_till_now
neighbors_chosen_till_now= neighbors_chosen_till_now.union(neighbors_of_chosen_node)
for node in top_tenpct_nodes:
neighbors_of_node=set(main_graph.neighbors(node))
new_neighbors_not_in_solutions_neighbors=neighbors_of_node - neighbors_chosen_till_now
cov[node]=len(new_neighbors_not_in_solutions_neighbors)
# print(node, len(new_neighbors_not_in_solutions_neighbors))
print(" solution ", sol)
reward=evaluate.evaluate(copy.deepcopy(main_graph), sol)
print("reward rl", reward)
print(" graph dir ", graph_dir)
file_handle2=open(graph_dir + "-reward_rl15", "w")
file_handle2.write(str(sol)+"\n"+str(reward))
file_handle2.close()
#
# #
# file_handlerdgrd=open(graph_dir + "-G.json.greedy_Sol", "r")
# greedy_sol = map(int, file_handlerdgrd.readlines()[1].split())[0:15]
# print(greedy_sol)
#
#
# reward=evaluate.evaluate(copy.deepcopy(main_graph), greedy_sol)
# print("rew greedy ", reward)
# print(" graph dir ", graph_dir)
# file_handle2=open(graph_dir + "-reward_greedy15", "w")
# file_handle2.write(str(reward))
# file_handle2.close()
sorted_dict = sorted( main_graph.degree().items(), key=operator.itemgetter(1),reverse=True)
bottom_nodes, top_nodes=bipartite.sets(main_graph)
bottom_nodes=list(bottom_nodes)
top_k_sol = []
# for i in range(0, 15):
# top_k_sol.append(sorted_dict[i][0])
#
count_sol=0
i=0
top_k_sol=[]
print(sorted_dict)
print(" bottom node ", bottom_nodes)
while count_sol < 15:
if sorted_dict[i][0] in bottom_nodes:
print(" short ", sorted_dict[i][0])
count_sol=count_sol + 1
top_k_sol.append(sorted_dict[i][0])
i+=1
print(" top k", top_k_sol)
reward=evaluate.evaluate(copy.deepcopy(main_graph), top_k_sol)
print("rew topk ", reward)
print(" graph dir ", graph_dir)
file_handle2=open(graph_dir + "-reward_topk_15", "w")
file_handle2.write(str(top_k_sol)+"\n"+str(reward))
file_handle2.close()
class Graph:
def __init__(self,graph_dir, num_k, sampling_freq):
#solve(graph_dir)
#exit()
(self.graphx, unscaled_embedding, self.numNodes, self.top_tenpct_nodes, self.dict_node_sampled_neighbors ) = getnewgraph(graph_dir, num_k, sampling_freq)
# self.isselected = [-1 for _ in range(0, self.numnodes)]
self.isSelected={}
for key in self.top_tenpct_nodes:
self.isSelected[key]=-1
# self.iscounted = [False for _ in range(0, self.numnodes)]
self.isCounted={}
for x in range(0, self.numNodes):
self.isCounted[x]=False
self.state = [] # sequence of nodes selected
self.cumulativereward = []
self.embedding = unscaled_embedding
self.embedding_time={}
for i in range(0, num_k + 1):
self.embedding_time[i]=copy.deepcopy(self.embedding)
#print(self.embedding)
self.neighbors_chosen_till_now=set()