-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
277 lines (213 loc) · 9.87 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import graphGenerator
import numpy as np
import nn
from random import randint
import networkx as nx
import random
from sklearn import preprocessing
from networkx.readwrite import json_graph
import json
import graphEnv
import pickle
from sklearn.preprocessing import StandardScaler
import copy
import evaluate_spread
from sklearn.decomposition import PCA
import os
def read_json_file(filename):
print("graph file ", filename)
with open(filename) as f:
js_graph = json.load(f)
return json_graph.node_link_graph(js_graph)
def getNewGraph(graph_dir,num_k, sampling_freq):
#budget_used =num_k
#top_ten_file = open(graph_dir + "_top_ten_percent.txt_{}".format(budget_used))
top_ten_file=open(graph_dir + "_top_ten_percent.txt" + "_" + str(num_k) + "_nbs_" + str(sampling_freq))
top_ten_file_content = top_ten_file.read()
top_tenpct_nodes = list(map(int,top_ten_file_content.split()))
#embedding_file = graph_dir + "_embeddings.npy_{}.pickle".format(num_k)
embedding_file=graph_dir + "_embeddings.npy" + "_" + str(num_k) + "_nbs_" + str(sampling_freq) + ".pickle"
# embeddings_ordered = np.load(embedding_file)
#embeddings_ordered = np.array(embeddings_ordered,dtype='float64')
# m,n = embeddings_ordered.shape
#
embeddings_dict = {}
with open(embedding_file, 'rb') as handle:
embeddings_dict = pickle.load(handle)
#embeddings_ordered = np.append(empty_column_for_cover, embeddings_ordered, axis=1)
graph_json_filename = graph_dir + "-G.json"
main_graph = read_json_file(graph_json_filename)
m = len(main_graph)
empty_column_for_cover = np.array([2], dtype='float64')
dict_node_scores_file_name=graph_dir+ "_node_scores_supgs"+"_"+ str(num_k)+"_nbs_"+str(sampling_freq)+".pickle"
# dict_node_scores_file_name=graph_dir + "_node_scores_supgs_{}.pickle".format(budget_used)
with open(dict_node_scores_file_name, 'rb') as handle:
dict_sup_gs_scores =pickle.load(handle)
dict_node_sampled_neighbors_file_name=graph_dir + "-sampled_nbrs_for_rl.pickle"+"_"+ str(num_k)+"_nbs_"+str(sampling_freq)
# dict_node_sampled_neighbors_file_name=graph_dir + "-sampled_nbrs_for_rl.pickle_{}".format(budget_used)
with open(dict_node_sampled_neighbors_file_name, 'rb') as handle:
dict_node_sampled_neighbors =pickle.load(handle)
print("deg")
out_deg_wt_graph = main_graph.out_degree( weight='weight')
for k, v in embeddings_dict.items():
print("k ", k)
embeddings_dict[k]= np.array([1,1], dtype='float64')# np.concatenate((empty_column_for_cover, embeddings_dict[k]))#np.array([1,1], dtype='float64')#empty_column_for_cover#np.concatenate((empty_column_for_cover))#, empty_column_for_cover))
embeddings_dict[k][0] =len( dict_node_sampled_neighbors[k])#main_graph.degree(k)
embeddings_dict[k][1]= dict_sup_gs_scores[k]#main_graph.degree(k)#out_deg_wt_graph[k]#dict_sup_gs_scores[k]#main_graph.degree(k)
print(k, out_deg_wt_graph[k])
# embeddings_dict[k][1]=dict_sup_gs_scores[k]#main_graph.degree(k)
print(embeddings_dict)
scaler=StandardScaler()
temp_column_for_cover=np.ones((len(embeddings_dict), 2), dtype='float64')
i=0
dict_map_i_key={}
for key, value in embeddings_dict.items():
temp_column_for_cover[i]=value
dict_map_i_key[i]=key
i+=1
scaler.fit(temp_column_for_cover)
temp_column_for_cover_norm=None
temp_column_for_cover_norm=scaler.transform(temp_column_for_cover)
#
# pca=PCA(n_components=2)
# temp_column_for_cover_norm_pca = pca.fit_transform(temp_column_for_over_norm[:,1:])
for index, value in enumerate(temp_column_for_cover_norm):
true_node_id=dict_map_i_key[index]
embeddings_dict[true_node_id][0]=value[0]#np.concatenate((np.array([temp_column_for_cover_norm[index][0]]),value))
embeddings_dict[true_node_id][1]=value[1]
#embeddings_dict[true_node_id][2]=value[2]
return (main_graph,embeddings_dict ,m,top_tenpct_nodes,dict_node_sampled_neighbors)
class Graph:
def __init__(self, dimEmbedding, episodeNum, num_k):
cons_to_add = 5000
self.graph_dir = "./GraphSAGE-master/real_data/youtube/TV/train/large_graph"
#(self.graphX, unscaled_embedding, self.numNodes, self.top_tenpct_nodes) = graphGenerator.getNewGraph(dimEmbedding, episodeNum, num_k)
(self.graphX, unscaled_embedding, self.numNodes, self.top_tenpct_nodes,self.dict_node_sampled_neighbors) = getNewGraph(self.graph_dir, num_k, 0.003)
self.graph_dir = self.graph_dir+"/"
#(self.graphX, unscaled_embedding, self.numNodes, self.top_tenpct_nodes) = getNewGraph("./GraphSAGE-master/graph_data/graph" + str(episodeNum+cons_to_add) + "/graph" + str(episodeNum+cons_to_add))
# self.isSelected = [-1 for _ in range(0, len(self.top_tenpct_nodes))]
self.isCounted = {}#[False for _ in range(0, len(self.top_tenpct_nodes))]
self.isCounted={}
for x in range(0, self.numNodes):
self.isCounted[x] =False
self.state = [] # sequence of nodes selected
self.cumulativeReward = []
self.embedding = unscaled_embedding
self.neighbors_chosen_till_now = set()
self.isSelected = {}
for key in self.top_tenpct_nodes:
self.isSelected[key] = -1
print(self.isSelected)
self.cumulativeReward = []
self.embedding = unscaled_embedding
self.embedding_time = {}
for i in range(0, num_k+1):
self.embedding_time[i] = copy.deepcopy(self.embedding)
def init(learningRate, numOfEpochs, batchSize, dimension):
nn.init(learningRate, numOfEpochs, batchSize, dimension)
# gives the index of random unselected node
def getRandomNode(graphid,stateIdx):
print("graph id", graphid)
graph = graphEnv.graphEnvironment[graphid]
count_unselect = 0
for r_node in graph.top_tenpct_nodes:
if graph.isSelected[r_node]==-1:
count_unselect = count_unselect + 1
randomSelection = randint(1,count_unselect)
count_unselect = 0
for r_node in graph.top_tenpct_nodes:
if graph.isSelected[r_node]==-1:
count_unselect = count_unselect + 1
if count_unselect==randomSelection:
selection = r_node
break
# graph=graphEnv.graphEnvironment[graphid]
# for r_node in graph.top_tenpct_nodes:
# if graph.isSelected[r_node]==-1:
# selection = r_node
# break
return selection
# returns the index of the selected node based on exploration and exploitation
def getNode(probOfRandomSelection, graphid, stateIdx):
prob = random.uniform(0,1)
print("prob",prob)
if (prob <= probOfRandomSelection):
print("Getting Random Node")
nodeSelected = getRandomNode(graphid, stateIdx)
else:
print("Getting Best Node")
(nodeSelected,_) = nn.getBestNode(graphid, stateIdx)
if nodeSelected==-1:
nodeSelected = getRandomNode(graphid,stateIdx)
# graphEnv.graphEnvironment[graphid].top_tenpct_nodes.remove(nodeSelected)
return nodeSelected
def calculate_spread_mc_sim(graph_dir,seed_nodes,model):
if len(seed_nodes)==0:
return 0
else:
if(model =="TV"):
mc_path=graph_dir
num_mc_sim=5
if len(seed_nodes) == 0:
return 0
else:
spread=evaluate_spread.evaluate_helper_without_mp(mc_path, None, seed_nodes, num_mc_sim)
return spread
else:
temp_seed_file_name = "temp_seed_select.txt"
file_temp_seed_select = open(temp_seed_file_name,'w')
print("seed nodes ", seed_nodes)
seed_nodes = [str(i) for i in seed_nodes]
print("joined ", "\n".join(seed_nodes))
file_temp_seed_select.write("\n".join(seed_nodes))
file_temp_seed_select.close()
os.chdir("Executables/")
os.system("python run_eval.py " + "../"+temp_seed_file_name +" " + str(len(seed_nodes)) +" " + "../temp_reward.txt > /dev/null")
file_result_reward_name = "temp_reward.txt"
os.chdir("../")
file_result_reward = open(file_result_reward_name,'r')
spread = float(file_result_reward.read())
# spread = evaluate_spread.evaluate_helper_without_mp(mc_path,None, seed_nodes,num_mc_sim)
return spread
# net addition to the influence
# influence: Number
def getShortReward(nodeSelected, graphid, previous_spread):
# additionCount = 0
# list_of_neighbors = graphEnv.graphEnvironment[graphid].graphX.neighbors(nodeSelected)
# print(" neighors ", list_of_neighbors)
# for v in list_of_neighbors:
# if (graphEnv.graphEnvironment[graphid].isCounted[v] == False):
# additionCount += 1
# #print('[v] ' , v)
# graphEnv.graphEnvironment[graphid].isCounted[v] = True
#
# return additionCount
if(len(graphEnv.graphEnvironment[graphid].state)==0):
print(" first step ")
shortReward = calculate_spread_mc_sim(graphEnv.graphEnvironment[graphid].graph_dir, [nodeSelected],"TV")
print(" short reward ", shortReward)
return shortReward, shortReward
seed_nodes_earlier = graphEnv.graphEnvironment[graphid].state[:]
seed_nodes_later = seed_nodes_earlier[:]
seed_nodes_later.append(nodeSelected)
new_node_to_be_added = graphEnv.graphEnvironment[graphid].numNodes + 1
# initial_spread = calculate_spread_mc_sim(graphEnv.graphEnvironment[graphid].graphX, seed_nodes_earlier, new_node_to_be_added)
# print("before ",initial_spread, seed_nodes_earlier, new_node_to_be_added)
# final_spread = calculate_spread_mc_sim(graphEnv.graphEnvironment[graphid].graphX, seed_nodes_later, new_node_to_be_added)
print("earlier " ,seed_nodes_earlier)
print("later ", seed_nodes_later)
#initial_spread = calculate_spread_mc_sim(graphEnv.graphEnvironment[graphid].graph_dir, seed_nodes_earlier,"TV")
# print("before ",initial_spread, seed_nodes_earlier, new_node_to_be_added)
final_spread = calculate_spread_mc_sim(graphEnv.graphEnvironment[graphid].graph_dir, seed_nodes_later,"TV")
#initial_spread = calculate_spread(graphEnv.graphE nvironment[graphid].graphX, seed_nodes_earlier,
# new_node_to_be_added)
print("before ", previous_spread, seed_nodes_earlier, new_node_to_be_added)
#final_spread = calculate_spread(graphEnv.graphEnvironment[graphid].graphX, seed_nodes_later, new_node_to_be_added)
print("after ", final_spread, seed_nodes_later, new_node_to_be_added)
shortReward = final_spread - previous_spread
print("sr, final", shortReward, final_spread)
return shortReward, final_spread
def updateParameters(historyOfTuples):
nn.trainNeuralNet(historyOfTuples)
def createMuUtil(lastIdx, graphid):
return nn.createMu(lastIdx, graphEnv.graphEnvironment[graphid])