-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
216 lines (170 loc) · 9.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import sys
import random
import util
import math
import os
import graphEnv
from sklearn.preprocessing import StandardScaler
import evaluate
import tensorflow as tf
from nn import neuralNetModel
import nn
from tensorflow.contrib import predictor
import evaluate_spread
#30 20 1 2 0.0005 1 6
def serving_input_receiver_fn():
"""Serving input_fn that builds features from placeholders
Returns
-------
tf.estimator.export.ServingInputReceiver
"""
mu_selected = tf.placeholder(dtype=tf.double, shape=[None, 2], name='mu_selected')
mu_left = tf.placeholder(dtype=tf.double, shape=[None, 2], name='mu_left')
mu_v=tf.placeholder(dtype=tf.double, shape=[None, 2], name='mu_v')
receiver_tensors = {'mu_selected': mu_selected, 'mu_left': mu_left,'mu_v':mu_v}
features = {'mu_selected': mu_selected, 'mu_left': mu_left,'mu_v':mu_v}
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# parameters for the code
k = int(sys.argv[1])
numEps = int(sys.argv[2])
dimEmbedding = int(sys.argv[3])
windowSize = int(sys.argv[4])
learningRate = float(sys.argv[5])
numOfEpochs = int(sys.argv[6])
batchSize = int(sys.argv[7])
bestValModel = None
bestValReward = 0
fileBestRLModel = open("bestRlModel.txt",'w')
# numSteps should be less than k
# window size must be much smaller than k to generate enough samples
historyOfTuples = []
util.init(learningRate, numOfEpochs, batchSize, dimEmbedding)
for episode in range(0,numEps):
#episode=episode+2
print("episode ", episode)
# generate a new graph for each episode
graph = util.Graph(dimEmbedding, episode, k)
print("graph ", graph)
graphEnv.graphEnvironment.append(graph)
# print(graph.graphX.degree())
# if episode==0:
# util.initialze_weights(graph)
# (numsteps == k) => Terminal Condition
previous_spread = 0
for step in range(0, k):
print("step: ", step)
# print("isSelected \n", graph.isSelected)
# select node to be added
probOfRandomSelection = max(pow(0.1, step), 0.8)
# print("probOfRandomSelection is : ", probOfRandomSelection)
if(step==0):
action_t= util.getRandomNode(episode,step)#graphEnv.graphEnvironment[episode].top_tenpct_nodes[0] action_t=
# graphEnv.graphEnvironment[episode].top_tenpct_nodes[0]#util.getRandomNode(episode,step)#graphEnv.graphEnvironment[episode].top_tenpct_nodes[0]
# index of the selected node
else:
action_t = util.getNode(probOfRandomSelection, episode, step)
print("Node selected: ", action_t)
# add action_t to the partial solution
graphEnv.graphEnvironment[episode].isSelected[action_t] = step
graphEnv.graphEnvironment[episode].isCounted[action_t] = True
neighbors_of_chosen_node = graphEnv.graphEnvironment[episode].dict_node_sampled_neighbors[action_t]#neighbors(action_t))
print("num nbrs of chosen node ", len(neighbors_of_chosen_node))
new_neighbors_length = len(neighbors_of_chosen_node - graphEnv.graphEnvironment[episode].neighbors_chosen_till_now)
graphEnv.graphEnvironment[episode].neighbors_chosen_till_now= graphEnv.graphEnvironment[episode].neighbors_chosen_till_now.union(neighbors_of_chosen_node )
print(" new diff neighbors , ",new_neighbors_length)
for node in graph.top_tenpct_nodes:
neighbors_of_node = graphEnv.graphEnvironment[episode].dict_node_sampled_neighbors[node]#neighbors(node))
new_neighbors_not_in_solutions_neighbors = neighbors_of_node - graphEnv.graphEnvironment[episode].neighbors_chosen_till_now
graphEnv.graphEnvironment[episode].embedding_time[step+1][node][0] = len(new_neighbors_not_in_solutions_neighbors)
scaler = StandardScaler()
temp_column_for_cover=np.ones((len(graphEnv.graphEnvironment[episode].embedding_time[step+1]), 1), dtype='float64')
i=0
dict_map_i_key = {}
for key, value in graphEnv.graphEnvironment[episode].embedding_time[step+1].items():
temp_column_for_cover[i] =value[0]
dict_map_i_key[i] = key
i+=1
scaler.fit(temp_column_for_cover)
temp_column_for_cover_norm = None
temp_column_for_cover_norm = scaler.transform(temp_column_for_cover)
for index, value in enumerate(temp_column_for_cover_norm):
true_node_id = dict_map_i_key[index]
graphEnv.graphEnvironment[episode].embedding_time[step+1][true_node_id][0] = value
print("seleected", graph.state)
# returns the short term reward and updates the isCounted
shortReward, previous_spread = util.getShortReward(action_t, episode,previous_spread)#= new_neighbors_length
# previous_spread= shortReward
print("Short reward for addition of ", action_t, "is ", shortReward)
print(" new previous spread, ", previous_spread)
graphEnv.graphEnvironment[episode].state.append(action_t)
if (step==0):
graphEnv.graphEnvironment[episode].cumulativeReward.append(shortReward)
else :
# print('*******************************************************************',shortReward)
graphEnv.graphEnvironment[episode].cumulativeReward.append(graph.cumulativeReward[step-1] + shortReward)
print(step, windowSize)
if (step > (windowSize)):
if (step == windowSize):
netShortReward = graphEnv.graphEnvironment[episode].cumulativeReward[step-1]
else:
netShortReward = graphEnv.graphEnvironment[episode].cumulativeReward[step-1] - graphEnv.graphEnvironment[episode].cumulativeReward[step - (windowSize)-1]
# The short term reward does not include the reward by adding the step vertex
# Action Tuples are of the form: (startIdx, nodeAdded, net cumulative reward, last index)
mu_v_at_that_step_minus_window = graphEnv.graphEnvironment[episode].embedding_time[step-windowSize][action_t].reshape(dimEmbedding+1)
mu_s,mu_l = util.createMuUtil(step-(windowSize), episode)
actionTuple = (mu_v_at_that_step_minus_window,graph.state[step-(windowSize)],netShortReward,step, mu_s, mu_l, episode)
historyOfTuples.append(actionTuple)
if(len(historyOfTuples)>5) :
util.updateParameters(historyOfTuples)
print("saving")
export_path=nn.model.export_saved_model("./trained_model_MC/", serving_input_receiver_fn)
graph_path = "./GraphSAGE-master/real_data/youtube/TV/train/large_graph"
command="python get_output.py " + graph_path +" "+ str(50) +" 0.003 None > /dev/null"
print(command)
os.system(command)
rl_result_file = graph_path+'-result_RL_50_nbs_0.003'
solution_file=open(rl_result_file, "r")
optimal_nodes=solution_file.readlines()
int_selected_nodes=[]
for node_i in optimal_nodes: # range(0, budget):
int_selected_nodes.append(int(node_i))
# print( appeared_count)
spread=0
print(" loading graph")
#graph_json_path=graph_path + "-G.json"
# G_data = json.load(open(graph_json_path))
# G = json_graph.node_link_graph(G_data)
#print("caculating spread, num of sim", num_mc_simulation)
# for i in range(0, num_mc_simulation):
# G_Copy = G.copy()
num_mc_simulation =8
spread=evaluate_spread.evaluate_helper_without_mp(graph_path, None, int_selected_nodes, num_mc_simulation)
# print(" iter {} spread {}".format(i, temp_spread))
# spread = spread + temp_spread
# spread = spread * 1.0 / num_mc_simulation
print('Average Spread = ', spread)
print('Spread = ', spread)
reward_file_name=graph_path + "reward_RL_budget_" + str(50)
reward_file=open(reward_file_name, 'w')
reward_file.write('100mc' + str(spread))
reward_file.close()
# reward_file_val='./GraphSAGE-master/real_data/large_kite/test/_bp-reward_RL'
# read_reward=int(open(reward_file_val, 'r').read())
print("read reward val ", spread)
print(" best reward val ", bestValReward)
if(spread > bestValReward):
bestValReward = spread
bestValModel = export_path
print(" got a bettern one", bestValReward, bestValModel)
fileBestRLModel = open("bestRlModel.txt",'w')
fileBestRLModel.write(bestValModel)
fileBestRLModel.close()
print("exp path ", export_path)
print("best exp path ", bestValModel)
if(len(historyOfTuples) > 3*k):
historyOfTuples.pop(0)
#
# print(" eval ", evaluate.evaluate(graphEnv.graphEnvironment[episode].graphX.copy(), graphEnv.graphEnvironment[episode].state))
# print("selected ",graphEnv.graphEnvironment[episode].state)