-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgraphGenerator.py
43 lines (33 loc) · 1.59 KB
/
graphGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import os
from networkx.readwrite import json_graph
import json
import networkx as nx
import gen_graph
from sklearn import preprocessing
# returns (embedding, numNodes):
# adj: list : adjacency list of ints {assuming unweighted graphs}
# embedding: np.array((numNodes,dimension))
# numNodes: Integer
def read_json_file(filename):
with open(filename) as f:
js_graph = json.load(f)
return json_graph.node_link_graph(js_graph)
def getNewGraph(dimEmbedding, episodeNum, num_k):
#gen_graph.genNewGraph(episodeNum,2000,0.4,num_k)
# os.chdir("./GraphSAGE-master")
# command = "sh ./supervisedPredict.sh " + "./graph_data/graph" + str(episodeNum) + "/graph" + str(episodeNum)
# print("getNewGraph: running command: ", command)
# os.system(command)
#os.chdir("../")
cons_to_add = 110
top_ten_file = open("./GraphSAGE-master/graph_data/graph" + str(episodeNum+cons_to_add) + "/graph" + str(episodeNum+cons_to_add) + "_top_ten_percent.txt")
top_ten_file_content = top_ten_file.read()
top_tenpct_nodes = list(map(int,top_ten_file_content.split()))
embedding_file = "./GraphSAGE-master/graph_data/graph" + str(episodeNum+cons_to_add) + "/graph" + str(episodeNum+cons_to_add) + "_embeddings.npy"
embeddings_ordered = np.load(embedding_file)
embeddings_ordered = np.array(embeddings_ordered,dtype='float64')
m,n = embeddings_ordered.shape
graph_json_filename = "./GraphSAGE-master/graph_data/graph" + str(episodeNum+cons_to_add)+ "/graph" + str(episodeNum+cons_to_add) +"-G.json"
main_graph = read_json_file(graph_json_filename)
return (main_graph,embeddings_ordered,m,top_tenpct_nodes)