diff --git a/include/functions/BaselineCorrection.h b/include/functions/BaselineCorrection.h new file mode 100644 index 0000000000..44af8db1ba --- /dev/null +++ b/include/functions/BaselineCorrection.h @@ -0,0 +1,66 @@ +/*************************************************/ +/* DO NOT MODIFY THIS HEADER */ +/* */ +/* MASTODON */ +/* */ +/* (c) 2015 Battelle Energy Alliance, LLC */ +/* ALL RIGHTS RESERVED */ +/* */ +/* Prepared by Battelle Energy Alliance, LLC */ +/* With the U. S. Department of Energy */ +/* */ +/* See COPYRIGHT for full restrictions */ +/*************************************************/ + +// This code was implemented in collaboration with Christopher J. Wong (chris.wong@utah.edu) from +// the University of Utah as part of NEUP Project: 17-12939. + +#pragma once + +#include "PiecewiseBase.h" +#include "FunctionInterface.h" + +class BaselineCorrection; + +/** + * Applies a baseline correction to an acceleration time history using the type-oriented algorithm + * provided by Wong and Ibarra (2022) and evaluates the corrected ordinates of a kinematic variable. + */ +class BaselineCorrection : public PiecewiseBase, protected FunctionInterface +{ +public: + static InputParameters validParams(); + + BaselineCorrection(const InputParameters & parameters); + + virtual Real value(Real t, const Point & /*p*/) const override; + virtual void setData(const std::vector & t, const std::vector & u) override; + +protected: + /** + * Helper function that computes the least squares polynomial of a kinematic time series and fills + * the container 'c' with its coefficients. The basis depends on the 'nmin' argument, which serves + * to guarantee that the minimum differentiability of a velocity or displacement fit is C1 or C2, + * respectively. See the 'applyAdjustment()' definition for the exact form of the polynomials. + */ + void fitTimeSeries(std::vector * c, + const int & nmin, + const std::vector & tau, + const std::vector & u, + const Real & jmap, + const Real & rtol = 1e-04); + + /** + * Helper function for adjusting the acceleration, velocity, and displacement time histories by + * polynomials of kinematically consistent bases multiplied by the provided coefficients 'c'. + */ + void applyAdjustment(const std::vector & c, + const std::vector & tau, + std::vector & accel, + std::vector & vel, + std::vector & disp, + const Real & jmap); + + /// Object to perform a piecewise linear interpolation of the corrected time series data + LinearInterpolation _corrected_series; +}; diff --git a/src/functions/BaselineCorrection.C b/src/functions/BaselineCorrection.C new file mode 100644 index 0000000000..642ef9f308 --- /dev/null +++ b/src/functions/BaselineCorrection.C @@ -0,0 +1,256 @@ +/*************************************************/ +/* DO NOT MODIFY THIS HEADER */ +/* */ +/* MASTODON */ +/* */ +/* (c) 2015 Battelle Energy Alliance, LLC */ +/* ALL RIGHTS RESERVED */ +/* */ +/* Prepared by Battelle Energy Alliance, LLC */ +/* With the U. S. Department of Energy */ +/* */ +/* See COPYRIGHT for full restrictions */ +/*************************************************/ + +// This code was implemented in collaboration with Christopher J. Wong (chris.wong@utah.edu) from +// the University of Utah as part of NEUP Project: 17-12939. + +#include "BaselineCorrection.h" + +registerMooseObject("MastodonApp", BaselineCorrection); + +InputParameters +BaselineCorrection::validParams() +{ + InputParameters params = PiecewiseBase::validParams(); + params.addClassDescription("Applies a baseline correction to an acceleration time history using " + "the type-oriented algorithm provided by Wong and Ibarra (2022) and " + "evaluates the corrected ordinates of a kinematic variable."); + + params.addRequiredParam( + "function", "The PiecewiseLinear function providing the acceleration to be corrected."); + + params.addParam( + "accel_fit_order", + 3, + "The degree of the polynomial used to adjust the acceleration.\n\nIf not specified while " + "'vel_fit_order' and/or 'disp_fit_order' are, then no acceleration fit is applied."); + params.addRangeCheckedParam( + "vel_fit_order", + "vel_fit_order > 0", + "The degree of the polynomial used to adjust the velocity. The minimum is one."); + params.addRangeCheckedParam( + "disp_fit_order", + "disp_fit_order > 1", + "The degree of the polynomial used to adjust the displacement. The minimum is two."); + params.addParamNamesToGroup("accel_fit_order vel_fit_order disp_fit_order", "Correction Type"); + + MooseEnum kinematic_variables("acceleration velocity displacement", "acceleration"); + params.addParam( + "series_output", + kinematic_variables, + "The kinematic variable whose corrected time history is to be evaluated."); + + params.addRangeCheckedParam( + "gamma", + 0.5, + "(0 <= gamma) & (gamma <= 1)", + "The gamma parameter for numerical integration of acceleration by the Newmark-beta rule."); + params.addRangeCheckedParam( + "beta", + 0.25, + "(0 <= beta) & (beta <= 0.5)", + "The beta parameter for numerical integration of velocity by the Newmark-beta rule."); + + params.addRangeCheckedParam( + "error_on_residual", + 1e-04, + "(0 < error_on_residual) & (error_on_residual < 1)", + "The relative residual of the solution to the normal equations that invokes an error.\n\n" + "Large residuals may indicate poor or invalid least squares approximations, which can lead " + "to unstable and futile adjustments to the time histories."); + params.addParamNamesToGroup("error_on_residual", "Advanced"); + + return params; +} + +BaselineCorrection::BaselineCorrection(const InputParameters & parameters) + : PiecewiseBase(parameters), FunctionInterface(this) +{ + const Function * func_ptr = &getFunctionByName(getParam("function")); + if (func_ptr->type() != "PiecewiseLinear") + paramError("function", + "This must be the name of a PiecewiseLinear object (use 'type = PiecewiseLinear')."); + + // Convert the function pointer to an instance of PiecewiseBase so its data can be retrieved + const PiecewiseBase * const accel_func = dynamic_cast(func_ptr); + + // Initialize containers for storing the time histories and the natural time abscissa + const auto size = accel_func->functionSize(); + std::vector time(size), accel(size), vel(size), disp(size), tau(size); + time[0] = accel_func->domain(0); + accel[0] = accel_func->range(0); + + // Compute the Jacobian to transform differentials onto the natural time domain + const auto jmap = accel_func->domain(size - 1) - time[0]; + + // Setup the basic values needed for time integration + Real dt, dv, dvo; + const auto gamma = getParam("gamma"), beta = getParam("beta"), cogamma = 1.0 - gamma, + cobeta = 0.5 - beta; + + for (std::size_t i = 1; i < size; ++i) + { + time[i] = accel_func->domain(i); + dt = time[i] - time[i - 1]; + accel[i] = accel_func->range(i); + + // Compute the nominal velocity and displacement by integrating with Newmark's method + dvo = dt * accel[i - 1]; + dv = dt * accel[i]; + vel[i] = vel[i - 1] + cogamma * dvo + gamma * dv; + disp[i] = disp[i - 1] + dt * vel[i - 1] + cobeta * dt * dvo + beta * dt * dv; + + // Compute natural time + tau[i] = tau[i - 1] + dt / jmap; + } + + std::vector coeffs; + const Real rtol = getParam("error_on_residual"); + if (parameters.isParamSetByUser("accel_fit_order") || + (!isParamValid("vel_fit_order") && !isParamValid("disp_fit_order"))) + { + coeffs.resize(getParam("accel_fit_order") + 1); + fitTimeSeries(&coeffs, 0, tau, accel, jmap, rtol); + applyAdjustment(coeffs, tau, accel, vel, disp, jmap); + } + + if (isParamValid("vel_fit_order")) + { + coeffs.resize(getParam("vel_fit_order")); + fitTimeSeries(&coeffs, 1, tau, vel, jmap, rtol); + applyAdjustment(coeffs, tau, accel, vel, disp, jmap); + } + + if (isParamValid("disp_fit_order")) + { + coeffs.resize(getParam("disp_fit_order") - 1); + fitTimeSeries(&coeffs, 2, tau, disp, jmap, rtol); + applyAdjustment(coeffs, tau, accel, vel, disp, jmap); + } + + switch (getParam("series_output")) + { + case 0: + setData(time, accel); + break; + case 1: + setData(time, vel); + break; + case 2: + setData(time, disp); + break; + } +} + +Real +BaselineCorrection::value(Real t, const Point & /*p*/) const +{ + return _corrected_series.sample(t); +} + +void +BaselineCorrection::fitTimeSeries(std::vector * c, + const int & nmin, + const std::vector & tau, + const std::vector & u, + const Real & jmap, + const Real & rtol) +{ + mooseAssert(0 <= nmin && nmin <= 2, + "The value for the minimum polynomial degree 'nmin' must be 0 for acceleration, 1 " + "for velocity, or 2 for displacement."); + mooseAssert(tau.size() == u.size(), + "The containers for the time series data, 'tau' and 'u', must be of equal size."); + mooseAssert(std::round(tau.front() / rtol) * rtol == 0.0 && + std::round(tau.back() / rtol) * rtol == 1.0 && jmap > 0.0, + "The natural time 'tau' domain must be [0, 1] and its Jacobian transform 'jmap' must " + "be strictly positive."); + + auto num_coeffs = c->size(); + DenseMatrix mat(num_coeffs, num_coeffs); + DenseVector rhs(num_coeffs), coeffs(num_coeffs); + + // Setup the basic values needed for assembling the system of normal equations + Real dtau; + const auto nminsq = MathUtils::pow(nmin, 2), a0 = (nminsq - 3 * nmin + 2) / 2, + a1 = (nminsq - 5 * nmin + 6) / 2, a2 = (nminsq - nmin - 4) / 2; + + for (MooseIndex(coeffs) k = 0; k < num_coeffs; ++k) + { + // Compute the normal matrix + for (MooseIndex(coeffs) j = 0; j < num_coeffs; ++j) + mat(k, j) = (a0 * MathUtils::pow(j, 2) + a1 * j - a2) / (k + j + 2.0 * nmin + 1.0); + + // Compute the vector on the right-hand side by trapezoidal integration + for (MooseIndex(tau) i = 0; i < tau.size() - 1; ++i) + { + dtau = tau[i + 1] - tau[i]; + MathUtils::addScaled(dtau, MathUtils::pow(tau[i], k + nmin) * u[i], rhs(k)); + MathUtils::addScaled(dtau, MathUtils::pow(tau[i + 1], k + nmin) * u[i + 1], rhs(k)); + } + rhs(k) /= 2.0 * MathUtils::pow(jmap, nmin); + } + + // Solve the system for the polynomial coefficients using LU factorization with partial pivoting + // + // Note: A copy of the normal matrix is created because it will be modified by the 'lu_solve()' + // method, and yet it is still needed afterward to calculate the residual. + const DenseMatrix mat_copy = mat; + mat.lu_solve(rhs, coeffs); + *c = coeffs.get_values(); + + if (std::any_of(c->cbegin(), c->cend(), [](const Real & k) { return !std::isfinite(k); })) + mooseError("Failed to compute a least squares polynomial of degree (", + num_coeffs + nmin - 1, + ") - one or more of the coefficients are undefined.\n\nTry using a lower order for " + "the fit. Otherwise, there may be an issue with the raw time series data."); + + // Compute the relative residual to assess the accuracy of the best-fit + DenseVector resultant(num_coeffs); + mat_copy.vector_mult(resultant, coeffs); + resultant.add(-1.0, rhs); + const auto res = resultant.l2_norm() / rhs.l2_norm(); + if (res > rtol) + mooseError("Failed to compute a least squares polynomial of degree (", + num_coeffs + nmin - 1, + ") within the specified tolerance (", + rtol, + " < ", + res, + ").\n\nConsider using a lower order or a greater tolerance."); +} + +void +BaselineCorrection::applyAdjustment(const std::vector & c, + const std::vector & tau, + std::vector & accel, + std::vector & vel, + std::vector & disp, + const Real & jmap) +{ + for (MooseIndex(tau) i = 0; i < tau.size(); ++i) + for (MooseIndex(c) k = 0; k < c.size(); ++k) + { + accel[i] -= (MathUtils::pow(k, 2) + 3.0 * k + 2.0) * c[k] * MathUtils::pow(tau[i], k); + vel[i] -= jmap * (k + 2.0) * c[k] * MathUtils::pow(tau[i], k + 1); + disp[i] -= MathUtils::pow(jmap, 2) * c[k] * MathUtils::pow(tau[i], k + 2); + } +} + +void +BaselineCorrection::setData(const std::vector & t, const std::vector & u) +{ + PiecewiseBase::setData(t, u); + _corrected_series.setData(_raw_x, _raw_y); +}