-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathinfer.py
816 lines (710 loc) · 28.1 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
##########################################
# Simultaneous Speech-to-Speech Translation Agent for StreamSpeech
#
# StreamSpeech: Simultaneous Speech-to-Speech Translation with Multi-task Learning (ACL 2024)
##########################################
from simuleval.utils import entrypoint
from simuleval.data.segments import SpeechSegment
from simuleval.agents import SpeechToSpeechAgent
from simuleval.agents.actions import WriteAction, ReadAction
from fairseq.checkpoint_utils import load_model_ensemble_and_task
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
from pathlib import Path
from typing import Any, Dict, Optional, Union
from fairseq.data.audio.audio_utils import convert_waveform
from examples.speech_to_text.data_utils import extract_fbank_features
import ast
import math
import os
import json
import numpy as np
from copy import deepcopy
import torch
import torchaudio.compliance.kaldi as kaldi
import yaml
from fairseq import checkpoint_utils, tasks, utils, options
from fairseq.file_io import PathManager
from fairseq import search
from fairseq.data.audio.feature_transforms import CompositeAudioFeatureTransform
import soundfile
SHIFT_SIZE = 10
WINDOW_SIZE = 25
ORG_SAMPLE_RATE = 48000
SAMPLE_RATE = 16000
FEATURE_DIM = 80
BOW_PREFIX = "\u2581"
DEFAULT_EOS = 2
global ASR
ASR=''
global S2TT
S2TT=''
global S2ST
S2ST=[]
class OnlineFeatureExtractor:
"""
Extract speech feature on the fly.
"""
def __init__(self, args, cfg):
self.shift_size = args.shift_size
self.window_size = args.window_size
assert self.window_size >= self.shift_size
self.sample_rate = args.sample_rate
self.feature_dim = args.feature_dim
self.num_samples_per_shift = int(self.shift_size * self.sample_rate / 1000)
self.num_samples_per_window = int(self.window_size * self.sample_rate / 1000)
self.len_ms_to_samples = lambda x: x * self.sample_rate / 1000
self.previous_residual_samples = []
self.global_cmvn = args.global_cmvn
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.feature_transforms = CompositeAudioFeatureTransform.from_config_dict(
{"feature_transforms": ["utterance_cmvn"]}
)
def clear_cache(self):
self.previous_residual_samples = []
def __call__(self, new_samples, sr=ORG_SAMPLE_RATE):
samples = new_samples
# # num_frames is the number of frames from the new segment
num_frames = math.floor(
(len(samples) - self.len_ms_to_samples(self.window_size - self.shift_size))
/ self.num_samples_per_shift
)
# # the number of frames used for feature extraction
# # including some part of thte previous segment
effective_num_samples = int(
num_frames * self.len_ms_to_samples(self.shift_size)
+ self.len_ms_to_samples(self.window_size - self.shift_size)
)
samples = samples[:effective_num_samples]
waveform, sample_rate = convert_waveform(
torch.tensor([samples]), sr, to_mono=True, to_sample_rate=16000
)
output = extract_fbank_features(waveform, 16000)
output = self.transform(output)
return torch.tensor(output, device=self.device)
def transform(self, input):
if self.global_cmvn is None:
return input
mean = self.global_cmvn["mean"]
std = self.global_cmvn["std"]
x = np.subtract(input, mean)
x = np.divide(x, std)
return x
class StreamSpeechS2STAgent(SpeechToSpeechAgent):
"""
Incrementally feed text to this offline Fastspeech2 TTS model,
with a minimum numbers of phonemes every chunk.
"""
def __init__(self, args):
super().__init__(args)
self.eos = DEFAULT_EOS
self.gpu = torch.cuda.is_available()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.args = args
self.load_model_vocab(args)
self.max_len = args.max_len
self.force_finish = args.force_finish
torch.set_grad_enabled(False)
tgt_dict_mt = self.dict[f"{self.models[0].mt_task_name}"]
tgt_dict = self.dict["tgt"]
tgt_dict_asr = self.dict["source_unigram"]
tgt_dict_st = self.dict["ctc_target_unigram"]
args.user_dir=args.agent_dir
utils.import_user_module(args)
from agent.sequence_generator import SequenceGenerator
from agent.ctc_generator import CTCSequenceGenerator
from agent.ctc_decoder import CTCDecoder
from agent.tts.vocoder import CodeHiFiGANVocoderWithDur
self.ctc_generator = CTCSequenceGenerator(
tgt_dict, self.models, use_incremental_states=False
)
self.asr_ctc_generator = CTCDecoder(tgt_dict_asr, self.models)
self.st_ctc_generator = CTCDecoder(tgt_dict_st, self.models)
self.generator = SequenceGenerator(
self.models,
tgt_dict,
beam_size=1,
max_len_a=1,
max_len_b=200,
max_len=0,
min_len=1,
normalize_scores=True,
len_penalty=1.0,
unk_penalty=0.0,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
search_strategy=search.BeamSearch(tgt_dict),
eos=tgt_dict.eos(),
symbols_to_strip_from_output=None,
)
self.generator_mt = SequenceGenerator(
self.models,
tgt_dict_mt,
beam_size=1,
max_len_a=0,
max_len_b=100,
max_len=0,
min_len=1,
normalize_scores=True,
len_penalty=1.0,
unk_penalty=0.0,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
search_strategy=search.BeamSearch(tgt_dict_mt),
eos=tgt_dict_mt.eos(),
symbols_to_strip_from_output=None,
use_incremental_states=False,
)
with open(args.vocoder_cfg) as f:
vocoder_cfg = json.load(f)
self.vocoder = CodeHiFiGANVocoderWithDur(args.vocoder, vocoder_cfg)
if self.device == "cuda":
self.vocoder = self.vocoder.cuda()
self.dur_prediction = args.dur_prediction
self.lagging_k1 = args.lagging_k1
self.lagging_k2 = args.lagging_k2
self.segment_size = args.segment_size
self.stride_n = args.stride_n
self.unit_per_subword = args.unit_per_subword
self.stride_n2 = args.stride_n2
if args.extra_output_dir is not None:
self.asr_file = Path(args.extra_output_dir + "/asr.txt")
self.st_file = Path(args.extra_output_dir + "/st.txt")
self.unit_file = Path(args.extra_output_dir + "/unit.txt")
self.quiet = False
else:
self.quiet = True
self.output_asr_translation = args.output_asr_translation
if args.segment_size >= 640:
self.whole_word = True
else:
self.whole_word = False
self.states = self.build_states()
self.reset()
@staticmethod
def add_args(parser):
parser.add_argument(
"--model-path",
type=str,
required=True,
help="path to your pretrained model.",
)
parser.add_argument(
"--data-bin", type=str, required=True, help="Path of data binary"
)
parser.add_argument(
"--config-yaml", type=str, default=None, help="Path to config yaml file"
)
parser.add_argument(
"--multitask-config-yaml",
type=str,
default=None,
help="Path to config yaml file",
)
parser.add_argument(
"--global-stats",
type=str,
default=None,
help="Path to json file containing cmvn stats",
)
parser.add_argument(
"--tgt-splitter-type",
type=str,
default="SentencePiece",
help="Subword splitter type for target text",
)
parser.add_argument(
"--tgt-splitter-path",
type=str,
default=None,
help="Subword splitter model path for target text",
)
parser.add_argument(
"--user-dir",
type=str,
default="researches/ctc_unity",
help="User directory for model",
)
parser.add_argument(
"--agent-dir",
type=str,
default="agent",
help="User directory for agents",
)
parser.add_argument(
"--max-len", type=int, default=200, help="Max length of translation"
)
parser.add_argument(
"--force-finish",
default=False,
action="store_true",
help="Force the model to finish the hypothsis if the source is not finished",
)
parser.add_argument(
"--shift-size",
type=int,
default=SHIFT_SIZE,
help="Shift size of feature extraction window.",
)
parser.add_argument(
"--window-size",
type=int,
default=WINDOW_SIZE,
help="Window size of feature extraction window.",
)
parser.add_argument(
"--sample-rate", type=int, default=ORG_SAMPLE_RATE, help="Sample rate"
)
parser.add_argument(
"--feature-dim",
type=int,
default=FEATURE_DIM,
help="Acoustic feature dimension.",
)
parser.add_argument(
"--vocoder", type=str, required=True, help="path to the CodeHiFiGAN vocoder"
)
parser.add_argument(
"--vocoder-cfg",
type=str,
required=True,
help="path to the CodeHiFiGAN vocoder config",
)
parser.add_argument(
"--dur-prediction",
action="store_true",
help="enable duration prediction (for reduced/unique code sequences)",
)
parser.add_argument("--lagging-k1", type=int, default=0, help="lagging number")
parser.add_argument("--lagging-k2", type=int, default=0, help="lagging number")
parser.add_argument(
"--segment-size", type=int, default=320, help="segment-size"
)
parser.add_argument("--stride-n", type=int, default=1, help="lagging number")
parser.add_argument("--stride-n2", type=int, default=1, help="lagging number")
parser.add_argument(
"--unit-per-subword", type=int, default=15, help="lagging number"
)
parser.add_argument(
"--extra-output-dir", type=str, default=None, help="extra output dir"
)
parser.add_argument(
"--output-asr-translation",
type=bool,
default=False,
help="extra output dir",
)
def reset(self):
self.src_seg_num = 0
self.tgt_subwords_indices = None
self.src_ctc_indices = None
self.src_ctc_prefix_length = 0
self.tgt_ctc_prefix_length = 0
self.tgt_units_indices = None
self.prev_output_tokens_mt = None
self.tgt_text = []
self.mt_decoder_out = None
self.unit = None
self.wav = []
self.post_transcription = ""
self.unfinished_wav = None
self.states.reset()
try:
self.generator_mt.reset_incremental_states()
self.ctc_generator.reset_incremental_states()
except:
pass
def to_device(self, tensor):
if self.gpu:
return tensor.cuda()
else:
return tensor.cpu()
def load_model_vocab(self, args):
filename = args.model_path
if not os.path.exists(filename):
raise IOError("Model file not found: {}".format(filename))
state = checkpoint_utils.load_checkpoint_to_cpu(filename)
state["cfg"].common['user_dir']=args.user_dir
utils.import_user_module(state["cfg"].common)
task_args = state["cfg"]["task"]
task_args.data = args.data_bin
args.global_cmvn = None
if args.config_yaml is not None:
task_args.config_yaml = args.config_yaml
with open(os.path.join(args.data_bin, args.config_yaml), "r") as f:
config = yaml.load(f, Loader=yaml.BaseLoader)
if "global_cmvn" in config:
args.global_cmvn = np.load(config["global_cmvn"]["stats_npz_path"])
self.feature_extractor = OnlineFeatureExtractor(args, config)
if args.multitask_config_yaml is not None:
task_args.multitask_config_yaml = args.multitask_config_yaml
task = tasks.setup_task(task_args)
self.task = task
overrides = ast.literal_eval(state["cfg"].common_eval.model_overrides)
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(filename),
arg_overrides=overrides,
task=task,
suffix=state["cfg"].checkpoint.checkpoint_suffix,
strict=(state["cfg"].checkpoint.checkpoint_shard_count == 1),
num_shards=state["cfg"].checkpoint.checkpoint_shard_count,
)
chunk_size = args.segment_size // 40
self.models = models
for model in self.models:
model.eval()
model.share_memory()
if self.gpu:
model.cuda()
model.encoder.chunk_size = chunk_size
if chunk_size >= 16:
chunk_size = 16
else:
chunk_size = 8
for conv in model.encoder.subsample.conv_layers:
conv.chunk_size = chunk_size
for layer in model.encoder.conformer_layers:
layer.conv_module.depthwise_conv.chunk_size = chunk_size
# Set dictionary
self.dict = {}
self.dict["tgt"] = task.target_dictionary
for k, v in task.multitask_tasks.items():
self.dict[k] = v.tgt_dict
@torch.inference_mode()
def policy(self):
# print(self.states.source)
feature = self.feature_extractor(self.states.source)
if feature.size(0) == 0 and not self.states.source_finished:
return ReadAction()
src_indices = feature.unsqueeze(0)
src_lengths = torch.tensor([feature.size(0)], device=self.device).long()
self.encoder_outs = self.generator.model.forward_encoder(
{"src_tokens": src_indices, "src_lengths": src_lengths}
)
finalized_asr = self.asr_ctc_generator.generate(
self.encoder_outs[0], aux_task_name="source_unigram"
)
asr_probs = torch.exp(finalized_asr[0][0]["lprobs"])
for i, hypo in enumerate(finalized_asr):
i_beam = 0
tmp = hypo[i_beam]["tokens"].int()
src_ctc_indices = tmp
src_ctc_index = hypo[i_beam]["index"]
text = "".join([self.dict["source_unigram"][c] for c in tmp])
text = text.replace("_", " ")
text = text.replace("▁", " ")
text = text.replace("<unk>", " ")
text = text.replace("<s>", "")
text = text.replace("</s>", "")
if len(text) > 0 and text[0] == " ":
text = text[1:]
if self.states.source_finished and not self.quiet:
with open(self.asr_file, "a") as file:
print(text, file=file)
if self.output_asr_translation:
print("Streaming ASR:", text)
global ASR
ASR=text
finalized_st = self.st_ctc_generator.generate(
self.encoder_outs[0], aux_task_name="ctc_target_unigram"
)
st_probs = torch.exp(finalized_st[0][0]["lprobs"])
for i, hypo in enumerate(finalized_st):
i_beam = 0
tmp = hypo[i_beam]["tokens"].int()
tgt_ctc_indices = tmp
tgt_ctc_index = hypo[i_beam]["index"]
text = "".join([self.dict["ctc_target_unigram"][c] for c in tmp])
text = text.replace("_", " ")
text = text.replace("▁", " ")
text = text.replace("<unk>", " ")
text = text.replace("<s>", "")
text = text.replace("</s>", "")
if len(text) > 0 and text[0] == " ":
text = text[1:]
if not self.states.source_finished:
src_ctc_prefix_length = src_ctc_indices.size(-1)
tgt_ctc_prefix_length = tgt_ctc_indices.size(-1)
self.src_ctc_indices = src_ctc_indices
if (
src_ctc_prefix_length < self.src_ctc_prefix_length + self.stride_n
or tgt_ctc_prefix_length < self.tgt_ctc_prefix_length + self.stride_n
):
return ReadAction()
self.src_ctc_prefix_length = max(
src_ctc_prefix_length, self.src_ctc_prefix_length
)
self.tgt_ctc_prefix_length = max(
tgt_ctc_prefix_length, self.tgt_ctc_prefix_length
)
subword_tokens = (
(tgt_ctc_prefix_length - self.lagging_k1) // self.stride_n
) * self.stride_n
if self.whole_word:
subword_tokens += 1
new_subword_tokens = (
(subword_tokens - self.tgt_subwords_indices.size(-1))
if self.tgt_subwords_indices is not None
else subword_tokens
)
if new_subword_tokens < 1:
return ReadAction()
else:
self.src_ctc_indices = src_ctc_indices
new_subword_tokens = -1
new_subword_tokens = int(new_subword_tokens)
single_model = self.generator.model.single_model
mt_decoder = getattr(single_model, f"{single_model.mt_task_name}_decoder")
# 1. MT decoder
finalized_mt = self.generator_mt.generate_decoder(
self.encoder_outs,
src_indices,
src_lengths,
{
"id": 1,
"net_input": {"src_tokens": src_indices, "src_lengths": src_lengths},
},
self.tgt_subwords_indices,
None,
None,
aux_task_name=single_model.mt_task_name,
max_new_tokens=new_subword_tokens,
)
if finalized_mt[0][0]["tokens"][-1] == 2:
tgt_subwords_indices = finalized_mt[0][0]["tokens"][:-1].unsqueeze(0)
else:
tgt_subwords_indices = finalized_mt[0][0]["tokens"].unsqueeze(0)
if self.whole_word:
j = 999999
if not self.states.source_finished:
for j in range(tgt_subwords_indices.size(-1) - 1, -1, -1):
if self.generator_mt.tgt_dict[
tgt_subwords_indices[0][j]
].startswith("▁"):
break
tgt_subwords_indices = tgt_subwords_indices[:, :j]
finalized_mt[0][0]["tokens"] = finalized_mt[0][0]["tokens"][:j]
if j == 0:
return ReadAction()
new_incremental_states = [{}]
if (
self.generator_mt.incremental_states is not None
and self.generator_mt.use_incremental_states
):
for k, v in self.generator_mt.incremental_states[0].items():
if v["prev_key"].size(2) == v["prev_value"].size(2):
new_incremental_states[0][k] = {
"prev_key": v["prev_key"][:, :, :j, :].contiguous(),
"prev_value": v["prev_value"][:, :, :j, :].contiguous(),
"prev_key_padding_mask": None,
}
else:
new_incremental_states[0][k] = {
"prev_key": v["prev_key"],
"prev_value": v["prev_value"][:, :, :j, :].contiguous(),
"prev_key_padding_mask": None,
}
self.generator_mt.incremental_states = deepcopy(
new_incremental_states
)
max_tgt_len = max([len(hypo[0]["tokens"]) for hypo in finalized_mt])
if self.whole_word:
max_tgt_len += 1
prev_output_tokens_mt = (
src_indices.new_zeros(src_indices.shape[0], max_tgt_len)
.fill_(mt_decoder.padding_idx)
.int()
)
for i, hypo in enumerate(finalized_mt):
i_beam = 0
tmp = hypo[i_beam]["tokens"].int()
prev_output_tokens_mt[i, 0] = self.generator_mt.eos
if tmp[-1] == self.generator_mt.eos:
tmp = tmp[:-1]
prev_output_tokens_mt[i, 1 : len(tmp) + 1] = tmp
tokens = [self.generator_mt.tgt_dict[c] for c in tmp]
text = "".join(tokens)
text = text.replace("_", " ")
text = text.replace("▁", " ")
text = text.replace("<unk>", " ")
text = text.replace("<s>", "")
text = text.replace("</s>", "")
if len(text) > 0 and text[0] == " ":
text = text[1:]
if self.states.source_finished and not self.quiet:
with open(self.st_file, "a") as file:
print(text, file=file)
if self.output_asr_translation:
print("Simultaneous translation:", text)
global S2TT
S2TT=text
if self.tgt_subwords_indices is not None and torch.equal(
self.tgt_subwords_indices, tgt_subwords_indices
):
if not self.states.source_finished:
return ReadAction()
else:
return WriteAction(
SpeechSegment(
content=(
self.unfinished_wav.tolist()
if self.unfinished_wav is not None
else []
),
sample_rate=SAMPLE_RATE,
finished=True,
),
finished=True,
)
self.tgt_subwords_indices = tgt_subwords_indices
if not self.states.source_finished:
if self.prev_output_tokens_mt is not None:
if torch.equal(
self.prev_output_tokens_mt, prev_output_tokens_mt
) or prev_output_tokens_mt.size(-1) <= self.prev_output_tokens_mt.size(
-1
):
return ReadAction()
self.prev_output_tokens_mt = prev_output_tokens_mt
mt_decoder_out = mt_decoder(
prev_output_tokens_mt,
encoder_out=self.encoder_outs[0],
features_only=True,
)[0].transpose(0, 1)
if self.mt_decoder_out is None:
self.mt_decoder_out = mt_decoder_out
else:
self.mt_decoder_out = torch.cat(
(self.mt_decoder_out, mt_decoder_out[self.mt_decoder_out.size(0) :]),
dim=0,
)
self.mt_decoder_out = mt_decoder_out
x = self.mt_decoder_out
if getattr(single_model, "proj", None) is not None:
x = single_model.proj(x)
mt_decoder_padding_mask = None
if prev_output_tokens_mt.eq(mt_decoder.padding_idx).any():
mt_decoder_padding_mask = prev_output_tokens_mt.eq(mt_decoder.padding_idx)
# 2. T2U encoder
if getattr(single_model, "synthesizer_encoder", None) is not None:
t2u_encoder_out = single_model.synthesizer_encoder(
x,
mt_decoder_padding_mask,
)
else:
t2u_encoder_out = {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": (
[mt_decoder_padding_mask]
if mt_decoder_padding_mask is not None
else []
), # B x T
"encoder_embedding": [],
"encoder_states": [],
"src_tokens": [],
"src_lengths": [],
}
if getattr(single_model, "t2u_augmented_cross_attn", False):
encoder_outs_aug = [t2u_encoder_out]
else:
encoder_outs = [t2u_encoder_out]
encoder_outs_aug = None
finalized = self.ctc_generator.generate(
encoder_outs[0],
prefix=self.tgt_units_indices,
)
if len(finalized[0][0]["tokens"]) == 0:
if not self.states.source_finished:
return ReadAction()
else:
return WriteAction(
SpeechSegment(
content=(
self.unfinished_wav.tolist()
if self.unfinished_wav is not None
else []
),
sample_rate=SAMPLE_RATE,
finished=True,
),
finished=True,
)
for i, hypo in enumerate(finalized):
i_beam = 0
tmp = hypo[i_beam]["tokens"].int() # hyp + eos
if tmp[-1] == self.generator.eos:
tmp = tmp[:-1]
unit = []
for c in tmp:
u = self.generator.tgt_dict[c].replace("<s>", "").replace("</s>", "")
if u != "":
unit.append(int(u))
if len(unit) > 0 and unit[0] == " ":
unit = unit[1:]
text = " ".join([str(_) for _ in unit])
if self.states.source_finished and not self.quiet:
with open(self.unit_file, "a") as file:
print(text, file=file)
cur_unit = unit if self.unit is None else unit[len(self.unit) :]
if len(unit) < 1 or len(cur_unit) < 1:
if not self.states.source_finished:
return ReadAction()
else:
return WriteAction(
SpeechSegment(
content=(
self.unfinished_wav.tolist()
if self.unfinished_wav is not None
else []
),
sample_rate=SAMPLE_RATE,
finished=True,
),
finished=True,
)
x = {
"code": torch.tensor(unit, dtype=torch.long, device=self.device).view(
1, -1
),
}
wav, dur = self.vocoder(x, self.dur_prediction)
cur_wav_length = dur[:, -len(cur_unit) :].sum() * 320
new_wav = wav[-cur_wav_length:]
if self.unfinished_wav is not None and len(self.unfinished_wav) > 0:
new_wav = torch.cat((self.unfinished_wav, new_wav), dim=0)
self.wav = wav
self.unit = unit
# A SpeechSegment has to be returned for speech-to-speech translation system
if self.states.source_finished and new_subword_tokens == -1:
self.states.target_finished = True
# self.reset()
global S2ST
S2ST_RESULT=S2ST.extend(new_wav.tolist())
return WriteAction(
SpeechSegment(
content=new_wav.tolist(),
sample_rate=SAMPLE_RATE,
finished=self.states.source_finished,
),
finished=self.states.target_finished,
)
def run(source):
samples, _ = soundfile.read(source, dtype="float32")
interval=int(args.segment_size*(ORG_SAMPLE_RATE/1000))
cur_idx=0
while not agent.states.target_finished:
cur_idx+=interval
agent.states.source=samples[:cur_idx]
agent.states.source_finished=cur_idx>len(samples)
action=agent.policy()
print("ASR_RESULT",ASR)
print("S2ST_RESULT",S2ST)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
StreamSpeechS2STAgent.add_args(parser)
args = parser.parse_args()
agent = StreamSpeechS2STAgent(args)
source="StreamSpeech/example/wavs/common_voice_fr_17301936.mp3"
run(source)