-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathslides-leipzig2018.tex
1369 lines (1176 loc) · 56.8 KB
/
slides-leipzig2018.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\setbeameroption{show notes on second screen}
\setbeamertemplate{note page}[plain]
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\footnotesize\justifying#2\par}}}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage{soul}\setul{0.3ex}{}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{mindmap,calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing}
\hypersetup{colorlinks=true}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{How topos theory can help algebra and geometry}
\author{Ingo Blechschmidt}
\date{July 10th, 2018}
\useinnertheme[shadow=true]{rounded}
\useoutertheme[subsection=false]{miniframes}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\renewcommand{\AA}{\mathbb{A}}
\renewcommand{\C}{\mathcal{C}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\mmm}{\mathfrak{m}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ull}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ull{\AA}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}{\vdash_{\!\!\!\vec x}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\setbeamertemplate{blocks}[rounded][shadow=false]
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.85cm}
\setlength{\textwidth}{9.85cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(-0.1cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{
\begin{center}
\begin{minipage}{#1}
%\setlength{\textwidth}{#1}
\begin{actionenv}#3
\def\insertblocktitle{\centering #2}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{headline}{\begin{beamercolorbox}[ht=2.25ex,dp=1ex]{section in head/foot}\insertsectionnavigationhorizontal{\textwidth}{}{}\end{beamercolorbox}}
\setbeamertemplate{frametitle}{%
\vskip0.7em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
\usebeamercolor[fg]{item}{\textbf{{\Large \insertframetitle}}}
\end{beamercolorbox}%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\begin{document}
\tikzstyle{topos} = [draw=mypurple, very thick, rectangle, rounded corners, inner sep=5pt, inner ysep=10pt]
\tikzstyle{title} = [fill=mypurple, text=white]
\input{images/primes.tex}
%\renewcommand{\sieve}[2]{SIEVE}
%\renewcommand{\fakesieve}[2]{SIEVE}
\newcommand{\drawbox}[4]{
\node[topos, #4] [fit = #3] (#1) {};
\node[title] at (#1.north) {#2};
}
\newcommand{\muchstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{14}{2}}
}
\newcommand{\muchstuffplaceholder}{
\includegraphics[height=3em]{filmat-placeholder}
\scalebox{0.5}{\fakesieve{14}{2}}
}
\newcommand{\fewstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{7}{2}}
}
\newcommand{\threeblobs}{
\colorbox{mypurple}{\ \ }\quad
\colorbox{mypurple}{\ \ }\quad
\colorbox{mypurple}{\ \ }
}
\addtocounter{framenumber}{-1}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}[c]
\centering
\medskip
\hspace*{-3.9em}%
\hil{How topos theory can help algebra and geometry} \\
\emph{-- an invitation --}
\vfill
\scriptsize
Ingo Blechschmidt \\
July 10th, 2018
\par
\jnote{1}{This talk has two parts. In the first part, we'll learn that
besides the standard mathematical universe, in which ordinary mathematics
takes place, there is a host of alternate mathematical universes. In these
alternate universes, the usual objects of mathematics enjoy slightly
different properties. For instance, we'll encounter universes in which the
intermediate value theorem fails or in which any map~$\RR \to \RR$ is
continuous.
In the second part, we'll see that these alternate universes, while seeming
strange on first contact, yield concrete applications in algebra and
geometry.}
\end{frame}}
\begin{frame}{Toposes are \ldots}
\begin{columns}
\begin{column}{0.5\textwidth}
\centering
\hil{generalized spaces}
\medskip
\includegraphics[height=0.32\textwidth]{grothendieck}
\quad
\includegraphics[height=0.32\textwidth]{elliptic-curve}
\footnotesize
étale topos of a scheme \\
field with one element
\end{column}
\begin{column}{0.5\textwidth}
\centering
\hil{mathematical universes}
\medskip
\begin{tikzpicture}
\node (overview) {
\scalebox{0.44}{\sieve{6}{4}}
};
\def\R{8pt}
\begin{pgfonlayer}{background}
\draw[decoration={bumps,segment length=8pt}, decorate, very thick, draw=mypurple]
($(overview.south west) + (\R, 0)$) arc(270:180:\R) --
($(overview.north west) + (0, -\R)$) arc(180:90:\R) --
($(overview.north east) + (-\R, 0)$) arc(90:0:\R) --
($(overview.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\end{column}
\end{columns}
\bigskip
\bigskip
\begin{columns}
\begin{column}{0.5\textwidth}
\centering
\hil{categories of sheaves}
\medskip
\includegraphics[height=0.304\textwidth]{sheaf}
\footnotesize
A topos is a finitely complete cartesian closed category with a
subobject classifier.
\end{column}
\begin{column}{0.5\textwidth}
\centering
\hil{embodiments of theories}
\medskip
\includegraphics[height=0.32\textwidth]{olivia-lattices}
\footnotesize
``Let~$G$ be a group.''
\end{column}
\end{columns}
\jnote{1}{Toposes were invented in the 1960s by Grothendieck in order to
solve concrete problems in algebraic geometry. Their raison d'être is the
following. In algebraic geometry, we want (and sometimes have to) work over
fields other than~$\RR$ and~$\CC$ and even over arbitrary commutative rings.
For the geometric objects in such settings, the \emph{schemes}, the Euclidean
topology is not available; we have to make do with the \emph{Zariski
topology}. However, important tools as singular cohomology don't work well
with this topology (too few opens).
The problem was solved by inventing \emph{étale topology} as an enhancement
of the Zariski topology. However, contrary to its name, the étale topology
isn't actually a topology in the usual sense. Putting the étale topology on a
scheme doesn't yield a refined topological space, but a \emph{topos}.
Toposes generalize topological spaces in two ways: Firstly, the ``open sets''
of toposes don't actually have to be sets of points; they can be more general
kinds of objects such as coverings. Toposes can even have no points at all
and still be nontrivial (this is for instance the case for the
\fixedhref{https://homepages.inf.ed.ac.uk/als/Talks/ccc09.pdf}{\emph{topos of
random sequences}}). Secondly, while classically a given open
subset is either contained in a further open subset or not, the opens of
toposes can be contained in further opens in many different ways.
Recently, toposes are being used to help the mythical
\fixedhref{http://math.ucr.edu/home/baez/week259.html}{field with
one element} come into being.}
\jnote{2}{Since the 1960s, many more aspects of toposes were discovered.
A popular reference on toposes starts with a list of 13 ways of viewing
toposes.
In this talk, we'll focus on the view of toposes as \emph{alternate
mathematical universes}. We can do mathematics inside these alternate
universes just as well as we can do mathematics inside the \emph{standard
universe} (which is represented by a particular topos called~``$\Set$'').
Each topos contains own versions of all the familiar mathematical objects --
numbers, functions, manifolds -- but the properties they enjoy can differ
slightly from the properties they enjoy in the standard topos.
The definition of what a topos is, displayed in the lower left of the slide,
has two problems. Firstly, it's only useful if one knows the relevant
category-theoretic jargon. Secondly, a topos has lots of further vital
structure, which is crucial for a rounded understanding, but not listed in the
displayed definition (which is trimmed for minimality).
A more comprehensive definition is: A \emph{topos} is a locally cartesian
closed, finitely complete and cocomplete Heyting category which is exact,
extensive and has a subobject classifier. We won't need either definition in
this talk.}
\jnote{3}{Toposes can also be thought as reifying the ``semantic essence'' of
mathematical theories (the theory of groups, the theory of rings, the theory
of intervals, \ldots). Given any such theory~$T$, there is a so-called
\emph{classifying topos}~$\Set[T]$. Its points are precisely the set-based
models of~$T$ (the groups, the rings, the intervals, \ldots), and it contains
a \emph{generic model} which has exactly those properties which all models
have. (This generic model is what mathematicians implicitly refer to when
they say ``Let~$G$ be a group.''.)
Crucially, two theories~$T$ and~$T'$ can have equivalent classifying
toposes even when they are not syntactically related in any way. This
observation is the starting point of Olivia Caramello's
\fixedhref{https://www.oliviacaramello.com/}{\emph{bridge
technique}}, a grand research program with applications in many different
fields.
\[ \xymatrix{
& \Set[T] \simeq \Set[T'] \ar@{--}@/^1pc/[rd] \ar@{--}@/_1pc/[ld] \\
T && T'
} \]}
\end{frame}
\section{A glimpse of the toposophic landscape}
\begin{frame}[fragile]{A glimpse of the toposophic landscape}
\hspace*{-1em}%
\begin{tikzpicture}
\node (objs-set0) at (0,0) {
\only<1-2>{\muchstuffplaceholder}
\only<3>{\muchstuff}
};
\node[scale=0.4] (objs-set1) at (-4.0,-2.5) {
\only<1->{\fewstuff}
};
\node[scale=0.4] (objs-eff1) at (4.0,-2.5) {
\only<2->{\fewstuff}
};
\node[scale=0.4] (objs-sh1) at (0,-2.5) {
\only<2->{\fewstuff}
};
\node (prop-set1) [below of=objs-set1, align=left] {
\only<1->{%
The usual laws \\
of logic hold.
}
};
\node (prop-eff1) [below of=objs-eff1, align=left] {
\only<2->{%
Every function \\
is computable.
}
};
\node (prop-sh1) [below of=objs-sh1, align=left, inner sep=0pt] {
\only<2->{%
The intermediate \\
value theorem fails.
}
};
\node (more-eff1) [below of=prop-eff1, visible on=<3->] {
\threeblobs
};
\node (more-sh1) [below of=prop-sh1, visible on=<3->] {
\threeblobs
};
\node (more-set1) [below of=prop-set1, visible on=<3->] {
\threeblobs
};
\begin{scope}[visible on=<1->]
\drawbox{set1}{$\mathrm{Set}$}{(objs-set1) (prop-set1) (more-set1)}{}
\end{scope}
\begin{scope}[visible on=<2->]
\drawbox{eff1}{Ef{}f}{(objs-eff1) (prop-eff1) (more-eff1)}{tape}
\end{scope}
\begin{scope}[visible on=<2->]
\drawbox{sh1}{$\mathrm{Sh}\, X$}{(objs-sh1) (prop-sh1) (more-sh1)}{draw=none}
\def\R{8pt}
\begin{pgfonlayer}{background}
\draw[decoration={bumps,segment length=8pt}, decorate, very thick, draw=mypurple, visible on=<2->]
($(sh1.south west) + (\R, 0)$) arc(270:180:\R) --
($(sh1.north west) + (0, -\R)$) arc(180:90:\R) --
($(sh1.north east) + (-\R, 0)$) arc(90:0:\R) --
($(sh1.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{scope}
\begin{scope}[visible on=<3->]
\drawbox{set0}{$\mathrm{Set}$}{(objs-set0) (set1) (eff1) (sh1)}{}
\end{scope}
\end{tikzpicture}
\jnote{1}{The topos~$\Set$ is the standard topos. This topos is where
ordinary mathematics takes place.}
\jnote{2}{Besides~$\Set$, there is a proper class' worth of further toposes.
We'll get to know some of these better during the course of the
talk.
For any topological space~$X$, there is the topos~$\Sh(X)$ of \emph{sheaves
over~$X$}. They are useful in analysis for internalizing
parameter-dependence. Apart from pathological cases like~$X$
being discrete, the intermediate value theorem in the form
\begin{indentblock}\emph{Let~$f : \RR \to \RR$ be a continuous function.
Assume~$f(-1) < 0 < f(1)$. Then there is a number~$x \in \RR$ such
that~$f(x) = 0$.}\end{indentblock}
fails in these toposes -- for very meaningful reasons discussed below.
The following, classically equivalent, version does hold:
\begin{indentblock}\emph{Let~$f : \RR \to \RR$ be a continuous function.
Assume~$f(-1) < 0 < f(1)$. Then, for every~$\varepsilon > 0$, there is
a number~$x \in \RR$ such that~$|f(x)| < \varepsilon$.}\end{indentblock}
The \emph{effective topos}~$\Eff$ is a computer scientist's dream come true:
In it, any function~$\NN \to \NN$ is computable by a Turing machine. The
effective topos and its close cousins can be used to study the differences
between the many models of computation, particularly those differences which
are only visible at higher types.}
\jnote{3}{This talk is still part of ordinary mathematics, that is, of the
topos~$\Set$. Therefore a more accurate picture depicts the three examples as
part of~$\Set$. (Technically, while they might not be ``toposes
over~$\Set$'', they are still locally-internal to~$\Set$ in the sense of
Penon.)
Most of the toposes in active use are either toposes of sheaves (over a
topological space or a
\fixedhref{https://ncatlab.org/nlab/show/site}{\emph{site}}), realizability
toposes (such as~$\Eff$ or variants constructed using different models of
computation), or arise from those using topos-theoretic constructions; but
this is not a complete classification. (The topos~$\Set$ is equivalent to the
topos of sheaves over the one-point space.)}
\end{frame}
\begin{frame}{The internal universe of a topos}
For any topos~$\E$ and any statement~$\varphi$, we define the meaning of
\vspace*{-0.5em}
\[
\text{``$\E \models \varphi$''} \quad
\text{(``$\varphi$ holds in the internal universe of~$\E$'')}
\]
\vspace*{-1.0em}
using the \hil{Kripke--Joyal semantics}.
\jnote{1-2}{We can picture the Kripke--Joyal semantics as a kind of translation
engine. When we're talking over the phone with Anna, a mathematician who lives in the
ef{}fective topos, at first we might feel uncomfortable when she states ``it's a basic
fact of life that any function~$\NN \to \NN$ is computable''. But if we
remember to switch on the Kripke--Joyal translation, we instead hear~``it's a
basic fact of life that there is a Turing machine which, given a Turing
machine computing a function~$f : \NN \to \NN$, outputs a Turing machine
computing~$f$'' which we can easily agree with.
The precise translation rules will be explained by osmosis for the
ef{}fective topos, on the next slide, and by a formal definition for sheaf
toposes and for the little Zariski topos, further below.}
\jnote{2}{When exploring a new topos for the first time, the only way to
find out which statements hold in it is to translate them using the
Kripke--Joyal semantics and check whether the translation holds in the usual
mathematical sense. As soon as we have established a certain stock of
statements in this way, we can switch to a more efficient procedure: We can
just use mathematical reasoning to deduce new statements from known ones.}
\jnote{3}{Irrespective of philosophical preferences, it's a fact of life that
most toposes only support constructive reasoning; in most toposes, proof by
contradiction is not valid. (Examples for toposes in which this is possible
are sheaf toposes~$\Sh(X)$ over discrete topological spaces, but not many
more than that.)
One might fear that most of mathematics breaks down in a constructive
setting. This is only true if interpreted naively: Often, already very small
changes to the definitions and statements suffice to make them constructively
valid (and are classically simply equivalent reformulations).
In other cases, we need to add interesting additional hypotheses --
hypotheses which are classically always satisfied. Here are a couple of
examples.
\begin{enumerate}\justifying
\item The usual proof that~$\sqrt{2}$ is not rational is perfectly fine
from a constructive point of view. It shows that the assumption
that~$\sqrt{2}$ is rational entails a contradiction. This is just the
definition of what it means to be not rational.
(\fixedhref{http://math.andrej.com/2010/03/29/proof-of-negation-and-proof-by-contradiction/}{There's a difference}
between a proof by contradiction and a proof of a negated statement.
Only the former can't generally be carried out in constructive
mathematics.)
\item Constructively it's still true that there is no such thing as a
statement which is neither true nor false: That is, we still
have~$\neg\neg(\varphi \vee \neg\varphi)$.
\end{enumerate}}
\jnote{4}{\begin{enumerate}\justifying\addtocounter{enumi}{2}
\item Constructively, we can't show that any inhabited subset of the
natural numbers has a minimal element. [We can also not show the
negation of that statement -- any valid constructive proof is a fortiori
a valid classical proof.] But we can show (quite
easily, by induction) that any inhabited and \emph{detachable} subset
of the natural numbers has a minimal element: A subset~$U \subseteq
\NN$ is detachable iff for any number~$n \in \NN$,~$n
\in U$ or~$n \not\in U$. Weakening the conclusion, we can also show that
any inhabited subset of the natural numbers does \emph{not not} have a
minimal element.
Both the failure and the two fixes can be interpreted computationally:
Given just the promise of an inhabited subset, we can't algorithmically
determine its minimum. But we can do so when given a \emph{membership
oracle}, or if it's
\fixedhref{https://rawgit.com/iblech/talk-constructive-mathematics/master/hal2015-notes.pdf}{okay to return the result in the
\emph{continuation monad}}.
\item We can't constructively prove that any finitely generated vector
space admits a basis. We can, however, constructively verify that any
finitely generated vector does \emph{not not} admit a basis, (By exploiting
that given a generating family~$(x_1,\ldots,x_n)$, it's \emph{not not} the
case that either one of the generators is a linear combination of the
others, or not.) We'll see below that this particular example entails that
any sheaf of finite type over a reduced scheme is locally free on a dense
open.
\end{enumerate}}
\jnote{5}{\begin{enumerate}\justifying\addtocounter{enumi}{4}
\item We can't constructively verify the fundamental theorem of Galois
theory for arbitrary (not necessarily finite) Galois extensions in its
usual formulation. But if we pass from the topological Galois group
to the \emph{localic Galois group}, we can. Some aspects of the proof even
get simpler that way.
\item Similarly, we can't constructively verify the Gelfand--Neumark
correspondence between commutative~$C^*$-algebras with unit and compact Hausdorff
spaces. But we can do so if we pass from compact Hausdorff spaces to
compact Hausdorff locales.
\end{enumerate}
A recommendation for more on constructive mathematics is the informative and
entertaining talk \emph{Five Stages of Accepting Constructive Mathematics}
by Andrej Bauer
(\fixedhref{https://www.youtube.com/watch?v=21qPOReu4FI}{video},
\fixedhref{https://www.ams.org/journals/bull/2017-54-03/S0273-0979-2016-01556-4/}{notes}).}
\vspace*{-1em}
\begin{columns}
\def\insertblocktitle{}
\begin{column}{0.3\textwidth}\usebeamertemplate{block begin}
\centering
$\Set \models \varphi$ \\
``$\varphi$ holds in the usual sense.''
\usebeamertemplate{block end}\end{column}
\begin{column}{0.3\textwidth}\usebeamertemplate{block begin}
\centering
$\Sh(X) \models \varphi$ \\
``$\varphi$ holds continuously.''
\usebeamertemplate{block end}\end{column}
\begin{column}{0.3\textwidth}\usebeamertemplate{block begin}
\centering
$\Eff \models \varphi$ \\
``$\varphi$ holds computably.''
\usebeamertemplate{block end}\end{column}
\end{columns}
\medskip
\pause
Any topos supports \hil{mathematical reasoning}:
\vspace*{-1.5em}
\begin{hilblock}
If~$\E \models \varphi$ and if~$\varphi$ entails~$\psi$
\pointthis{<3->}{constructively}{%
no $\varphi \vee \neg\varphi$,\ \
no $\neg\neg\varphi \Rightarrow \varphi$,\ \
no axiom of choice},
then~$\E \models \psi$.
\end{hilblock}
\bigskip
\end{frame}
\newcommand{\intex}[3]{#1 \quad #2\par #3\bigskip\medskip}
\begin{frame}{First steps in alternate universes}
\begin{changemargin}{-1.1em}{0em}
\fontsize{10pt}{12pt}\selectfont
\begin{itemize}
\item \intex{
$\Eff \models \text{``Any number is prime or is not prime.''}$
}{\textcolor{green!90}{\cmark}}{
Meaning: There is a \hil{Turing machine} which determines of
any given number whether it is prime or not.
}
\item \intex{
$\Eff \models \text{``There are infinitely many prime numbers.''}$
}{\textcolor{green!90}{\cmark}}{
Meaning: There is a \hil{Turing machine} producing arbitrarily many
primes.\\[0em]
}
\item \intex{
$\Eff \models \text{``Any function~$\NN \to \NN$ is the zero function or not.''}$
}{\textcolor{red!80}{\xmark}}{
Meaning: There is a \hil{Turing machine} which, given a Turing
machine computing a function~$f : \NN \to \NN$, determines whether~$f$
is zero or not.
}
\item \intex{
$\Eff \models \text{``Any function~$\NN \to \NN$ is computable.''}$
}{\textcolor{green!90}{\cmark}}{}
\item \intex{
$\Eff \models \text{``Any function~$\RR \to \RR$ is continuous.''}$
}{\textcolor{green!90}{\cmark}}{}
\item \intex{
$\Sh(X) \models \text{``Any cont. function with opposite signs has
a zero.''}$
}{\textcolor{red!80}{\xmark}}{
Meaning: Zeros can locally be picked \hil{continuously} in
continuous families of continuous functions.
\textcolor{red!80}{(\href{https://rawgit.com/iblech/internal-methods/master/images/zeros-in-families.mp4}{video} for counterexample)}
}
\end{itemize}
\end{changemargin}
\jnote{1}{There is a variant of the effective topos which is not built using
Turing machines, but using \emph{infinite-time Turing machines}, a popular
model for hypercomputation. In that variant, the statement ``any
function~$\NN \to \NN$ is the zero function or not'' is true; the statement
``any function~$\NN \to \NN$ is computable by a Turing machine'' is false;
and the statement~``any function~$\NN \to \NN$ is computable by an
infinite-time Turing machine'' is true again. Details can be found in
\fixedhref{https://rawgit.com/iblech/mathezirkel-kurs/master/superturingmaschinen/slides-warwick2017.pdf}{this set of slides}.
\begin{center}\fixedhref{https://rawgit.com/iblech/mathezirkel-kurs/master/superturingmaschinen/slides-warwick2017.pdf}{\includegraphics[width=0.6\textwidth]{exploring-hypercomputation-slides}}\end{center}}
\jnote{2}{We can also build a variant of the effective topos which uses
\emph{machines of the real world} instead of idealized Turing machines. In
doing so, we leave the realm of rigorous mathematics, but obtain interesting
connections with philosophy and physics. For instance, in that variant the
statement~``any function~$\RR \to \RR$ is continuous'' is true if machines in
the real world can only perform finitely many computational steps in finite
time and if it's possible to build hidden communication channels. Details can
be found in the book chapter
\emph{\fixedhref{http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/}{Intuitionistic Mathematics and Realizability in the Physical World}} by Andrej Bauer.
\begin{center}\fixedhref{http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/}{\includegraphics[width=0.3\textwidth]{zenil-computable-universe}}\end{center}}
\end{frame}
\newcommand{\appl}[3]{\centering\includegraphics[height=3.5em]{#1}\par\hil{#2}\\\footnotesize#3}
\begin{frame}{Applications}
\bigskip
\small
\begin{columns}
\begin{column}{0.35\textwidth}
\appl{analysis}{analysis}{
internalizing parameter-dependence
}
\end{column}
\begin{column}{0.39\textwidth}
\appl{calabi-yau}{algebraic geometry}{
\mbox{reducing geometry to algebra} \\
\mbox{reducing relative to absolute} \\
synthetic account
}
\end{column}
\begin{column}{0.35\textwidth}
\appl{klein-bottle}{differential geometry}{
reflection principles \\
synthetic account
}
\end{column}
\end{columns}
\bigskip
\bigskip
\begin{columns}
\begin{column}{0.35\textwidth}
\appl{torus-rainbow}{homotopy theory}{
synthetic account
computer-assisted proofs
generalizations
}
\end{column}
\begin{column}{0.39\textwidth}
\appl{generic-freeness}{commutative algebra}{
local-to-global principles \\
reduction techniques \\
constructive proofs
}
\end{column}
\begin{column}{0.35\textwidth}
\appl{bohr-topos}{further subjects}{
synth.~computability th. \\
synth.~measure theory \\
Bohr topos for QM
}
\end{column}
\end{columns}
\jnote{1}{The applications of the internal language of toposes in several
branches of mathematics are driven by the following fundamental empirical fact:
\vspace*{-1em}
\begin{center}The external translations of \\
some easy-to-prove internal statements of suitable toposes \\
are \\
nontrivial statements about the subject matter at hand.\end{center}
\vspace*{-1em}
For instance, Grothendieck's generic freeness lemma, an important theorem in
commutative algebra and algebraic geometry, is the external translation of
the basic observation ``finitely generated modules over finitely generated
algebras over fields are \emph{not not} free over the field and \emph{not
not} finitely presented over the algebra'' of constructive linear algebra.
Is there a theorem which can only be proven by topos-theoretic methods?
\emph{No,} for any proof employing the internal language can be unwound to
yield an external proof not referencing topos theory. Just as the translation
from internal statements to external ones is entirely mechanical, so is the
translation from internal proofs to external ones. However, this translation
will always make the proof longer, and, depending on the
syntactical complexity of the involved statements, the resulting external
proof might be quite complex.
The next two slides show examples regarding this increase in complexity.}
\jnote{2}{\begin{enumerate}\justifying
\item The statement ``if the two outer sheaves in a short exact sequence of
sheaves of modules are of finite type, then so is the middle one'' is the
external translation of the basic fact ``if the two outer modules
in a short exact sequence of modules are finitely generated, then so is the
middle one'' of constructive linear algebra.
The syntactical complexity of the internal statement is quite low (just one
implication sign, at toplevel, no long chains of quantifiers of mixed
types). Therefore the resulting external proof obtained by unwinding will
still be quite short and straightforward. In fact, this external proof will
coincide with what anyone well-versed in scheme theory will produce,
judiciously juggling open subsets.
Using the internal language of toposes in situations like this is therefore
mostly for mental hygiene, making rigorous the intuitive idea that the two
statements are related to each other.
\end{enumerate}}
\jnote{3}{\begin{enumerate}\justifying\addtocounter{enumi}{1}
\item A version of Hilbert's basis theorem, ``polynomial rings over
anonymously Noetherian rings are again anonymously Noetherian'', can be put
to use in the proof of Grothendieck's generic freeness lemma alluded to
above.
This statement has nontrivial syntactical complexity (the
Noetherian condition involves a double negation, therefore nested
implications). For this reason, already the translation of the
\emph{statement} is quite convoluted (a part of it is
\fixedhref{https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf}{displayed
in this set of slides} for your viewing pleasure). The translation of its
\emph{proof} contains a deformed copy of the standard proof of Hilbert's
basis theorem (in a way which doesn't allow to simply \emph{apply}
Hilbert's basis theorem, one has to actually redo its proof).
In situations like this, the internal language is of real value.
\end{enumerate}}
\jnote{4}{We're used to the fact that the usual laws of mathematical
reasoning apply to mathematical objects. The internal language of toposes
encapsulates and makes useful the following observation: The usual laws of
reasoning apply to our favorite mathematical objects \emph{also in
nontrivial ways different from the accustomed one}. I find this quite astonishing.
The next slide shows a basic application of this train of thought in
analysis. The presented example is of a rather simple nature and serves only
to explain the translation process in an explicit and rigorous fashion,
contrasting the previous slides which were somewhat short on details.
Details on the application to homotopy theory can be found in the
\fixedhref{https://homotopytypetheory.org/book/}{HoTT book}.
A tour of applications in algebraic geometry can be found in
\fixedhref{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{these
notes}.}
\end{frame}
\section[Analysis]{Applications in analysis}
\begin{frame}{The topos of sheaves over a space}
\small\vspace*{-0.8em}
Let~$X$ be a topological space. We recursively define
\[ U \models \varphi \quad \text{(``$\varphi$ holds on~$U$'')} \]
for open subsets~$U \subseteq X$ and statements~$\varphi$.
Write~``$\Sh(X) \models \varphi$'' to mean~$X \models \varphi$.
Let~$\C(U)$ be the set of continuous functions~$U \to \RR$.
\vspace*{-1.3em}
\footnotesize
\[ \renewcommand{\arraystretch}{1.15}\begin{array}{@{}l@{\ \ }c@{\ \ }l@{}}
U \models \top &\Ll& \text{true} \\
U \models \bot &\Ll& \hcancel{\text{false}}{0pt}{3pt}{0pt}{-2pt}\ U = \emptyset \\
U \models s = t &\Ll& \text{$s(x) = t(x)$ for all $x \in U$} \\
U \models \varphi \wedge \psi &\Ll&
\text{$U \models \varphi$ and $U \models \psi$} \\
U \models \varphi \vee \psi &\Ll&
\hcancel{\text{$U \models \varphi$ or $U \models \psi$}}{0pt}{3pt}{0pt}{-2pt}\ \text{there exists an open covering $U = \bigcup_i U_i$} \\
&& \quad\quad\text{such that for all~$i$: $U_i \models \varphi$ or $U_i \models \psi$} \\
U \models \varphi \Rightarrow \psi &\Ll&
\text{for all open~$V \subseteq U$: }
\text{$V \models \varphi$ implies $V \models \psi$} \\
U \models \forall s \? \RR\_ \varphi(s) &\Ll&
\text{for all open $V \subseteq U$ and functions~$s_0 \in \C(V)$: $V \models \varphi(s_0)$} \\
U \models \exists s \? \RR\_ \varphi(s) &\Ll&
\hcancel{\text{there exists $s_0 \in \C(U)$ such that $U \models \varphi(s_0)$}}{0pt}{3pt}{0pt}{-2pt} \\
&&
\text{there exists an open covering $U = \bigcup_i U_i$ such that for all~$i$:} \\
&& \quad\quad \text{there exists~$s_0 \in \C(U_i)$ such that $U_i \models \varphi(s_0)$}
\end{array} \]
\jnote{1}{It's an instructive exercise to verify that~$\Sh(X) \models
\neg\neg\varphi$ if and only if there is a dense open subset~$U \subseteq X$
such that~$U \models \varphi$. This equivalence gives geometric meaning to
the failure of classical logic in~$\Sh(X)$.}
\end{frame}
\begin{frame}{Internalizing parameter-dependence}
\justifying
Let~$(f_x)_{x \in X}$ be a continuous family of continuous
functions (that is, let a continuous function~$X \times \RR \to \RR,\,(x,a) \mapsto
f_x(a)$ be given). From the internal point of view of~$\Sh(X)$, this family
looks like a single function~$f : \RR \to \RR$.
\begin{itemize}
\item $\Sh(X) \models (\text{The function $f : \RR \to \RR$ is
continuous})$.\medskip
\item Iff $f_x(-1) < 0$ for all $x \in X$, then $\Sh(X) \models f(-1) < 0$.
\item Iff $f_x(+1) > 0$ for all $x \in X$, then $\Sh(X) \models f(+1) > 0$.
\item Iff all $f_x$ are increasing, then $\Sh(X) \models (\text{$f$ is
increasing})$.\medskip
\item Iff there is an open cover~$X = \bigcup_i U_i$ such
that for each~$i$, there is a continuous function~$s : U_i \to \RR$
with~$f_x(s(x)) = 0$ for all~$x \in U_i$, then $\Sh(X) \models \exists s
\? \RR\_ f(s) = 0$.
\end{itemize}
\jnote{1}{Hence:
\begin{enumerate}\justifying
\item The standard formulation of the intermediate value theorem fails
in~$\Sh(X)$, because its external interpretation is that in continuous
families of continuous functions, zeros can locally be picked continuously.
That claim is false, as
\fixedhref{https://rawgit.com/iblech/internal-methods/master/images/zeros-in-families.mp4}{this
counterexample} demonstrates.
As a corollary, we deduce that the standard formulation of the
intermediate value theorem is not constructively provable.
\item The \emph{approximate} intermediate value theorem (stating
that for any~$\varepsilon > 0$, there is a number~$x$ such that~$|f(x)| <
\varepsilon$)
\fixedhref{https://mathoverflow.net/questions/253059/approximate-intermediate-value-theorem-in-pure-constructive-mathematics}{has
a constructive proof} and therefore holds in~$\Sh(X)$. The
external interpretation is that in continuous families of continuous
functions, approximate zeros can locally be picked continuously.
\item The \emph{monotone} intermediate value theorem, stating that a strictly
increasing continuous function with opposite signs has a unique zero,
admits a constructive proof and therefore holds in~$\Sh(X)$. The external
interpretation is that in continuous families of strictly increasing
continuous functions, zeros can globally be picked continuously. You are
invited to prove this fact directly, without reference to the internal
language. This exercise isn't particularly hard, but it's not trivial either.
\end{enumerate}}
\end{frame}
\section[Differential geometry]{Applications in differential geometry}
\begin{frame}{Synthetic differential geometry}
\vspace*{-1em}
\begin{center}
\includegraphics[width=0.5\textwidth]{microaffinity}
\end{center}
\vspace*{-2em}
\begin{varblock}{10.8cm}{The axiom of microaffinity}
\justifying
Let~$\Delta = \{ \varepsilon \in \RR \,|\, \varepsilon^2 = 0 \}$.
For any function $f : \Delta \to \RR$,
there is a unique number~$a \in \RR$ such that
$f(\varepsilon) = f(0) + a \varepsilon$
for all~$\varepsilon \in \Delta$.
\end{varblock}