-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathslides-fischbachau2022.tex
1646 lines (1408 loc) · 62.3 KB
/
slides-fischbachau2022.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\usepackage[export]{adjustbox}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{graphbox}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd,wasysym}
\usepackage{bussproofs}
\usepackage{proof}
\usepackage{xspace}
\usepackage{amssymb}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage[normalem]{ulem}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning}
\hypersetup{colorlinks=true}
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{%
\node[shape=circle,draw,inner sep=1pt] (char) {#1};}}
\DeclareFontFamily{U}{bbm}{}
\DeclareFontShape{U}{bbm}{m}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbm
<10.95> bbm10%
<14.4> bbm12%
<17.28><20.74><24.88> bbm17}{}
\DeclareFontShape{U}{bbm}{m}{sl}
{ <5> <6> <7> bbmsl8%
<8> <9> <10> <12> gen * bbmsl
<10.95> bbmsl10%
<14.4> <17.28> <20.74> <24.88> bbmsl12}{}
\DeclareFontShape{U}{bbm}{bx}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbmbx
<10.95> bbmbx10%
<14.4> <17.28> <20.74> <24.88> bbmbx12}{}
\DeclareFontShape{U}{bbm}{bx}{sl}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmbxsl10}{}
\DeclareFontShape{U}{bbm}{b}{n}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmb10}{}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\SetMathAlphabet\mathbbm{bold}{U}{bbm}{bx}{n}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{Extraction of programs from proofs}
\author{Ingo Blechschmidt}
\date{September 21th, 2022}
\setbeameroption{show notes on second screen}
%\setbeamertemplate{note page}[plain, bg=white!90!black]
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\footnotesize\justifying#2\par}}}
%\useinnertheme[shadow=true]
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\BB}{\mathbb{B}}
\newcommand{\pp}{\mathbbm{p}}
\newcommand{\MM}{\mathbb{M}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}\,}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ul{\ensuremath{\AA}}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{headline}{}
\setbeamertemplate{frametitle}{%
\vskip0.5em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{{\large\,\!\insertframetitle}}};
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=mypurple!30]
($(title.south west) + (\R, 0)$) arc(270:180:\R) --
($(title.north west) + (0, -\R)$) arc(180:90:\R) --
($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
($(title.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\end{beamercolorbox}%
\vskip-0.2em%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\newcommand{\good}[1]{\textcolor{mypurple}{\textnormal{#1}}}
\newcommand{\bignumber}[1]{%
\renewcommand{\insertenumlabel}{#1}\scalebox{1.2}{\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\normalnumber}[1]{%
{\renewcommand{\insertenumlabel}{#1}\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newcommand{\subhead}[1]{{\centering\textcolor{gray}{\hrulefill}\quad\textnormal{#1}\quad\textcolor{gray}{\hrulefill}\par}}
\newcommand{\badbox}[1]{\colorbox{red!30}{#1}}
\newcommand{\infobox}[1]{\colorbox{yellow!70}{\color{black}#1}}
\newcommand{\grayline}{\textcolor{gray}{\hspace*{-3em}\hrulefill\hspace*{-3em}}}
\newcommand{\notnot}{\emph{not~not}\xspace}
\begin{document}
\addtocounter{framenumber}{-1}
%\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{1.59cm}\includegraphics[width=\paperwidth]{forest-light}\end{minipage}}
\definecolor{mypurple}{RGB}{253,73,34}
\begin{frame}[c]
\centering
\bigskip
\bigskip
\bigskip
\bigskip
\scriptsize
\textit{-- an invitation --}
\setbeamercolor{block body}{bg=black!100}
\begin{block}{}
\centering\normalsize\color{white}
\hil{Extraction} of \hil{programs} from \hil{proofs}
\end{block}
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
Autumn school on \\
\emph{Proof and Computation} \\
in Fischbachau \\
\ \\
September 26th to October 1st, 2022
Ingo Blechschmidt \\
University of Augsburg
\par
\end{frame}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{5.95cm}\includegraphics[width=\paperwidth]{fr1-lighter}\end{minipage}}
\begin{frame}{}
\jnote{1-5}{
From the displayed proof of Euclid's theorem, we can read off an algorithm
for computing arbitrarily large primes. There is a deeper reason to that:
The proof is \emph{constructive}, and from \emph{every} constructive proof
we can extract a corresponding program. One way to formally state and prove
this meta-statement is by \emph{realizability theory}, the subject of the
first lecture.
}
\jnote{4-5}{
In addition to the displayed applications of realizability theory,
personally I'm intrigued by it for mostly the following reasons:
(1)~Realizability elucidates the interplay between constructive and
computable mathematics. (2)~Realizability is a useful guide for pursuing
the question whether two given proofs are ``secretly the same'': Do they
have the same computational content? (3)~Realizability theory provides us
with a host of tantalizing anti-classical models of constructive
mathematics.
}
\jnote{5-5}{
In the second lecture, we will turn to extracting programs from
\emph{classical} proofs. We will do so by transforming classical proofs
into constructive ones and then applying the tools of the first lecture.
Amazingly, the displayed classical proof and others like it do have
constructive content---even though it is constructively and computably
impossible to determine minimal values of infinite sequences.
}
\jnote{6-}{
Finally, in the third lecture we will learn how to extract constructive
content from certain kinds of \emph{invalid} proofs---those which use the
preposterous assumption that every set is countable.
The methods presented in the second and in the third lecture are deeply
related to the \emph{dynamical approach to algebra} reported on in Stefan
Neuwirth's course. Coherent (and geometric) logic as in Marc Bezem's course
also plays an important role in this toolbox. It is greatly informed by a
categorical analysis as provided in Steve Awodey's course, particularly so
for the third lecture. The first and the second lecture overlap with
Chuangjie Xu's course, particularly regarding the
double-negation translation.
This course is set in an informal constructive metatheory. Formalization
would both be possible in type theory as in Fredrik Nordvall-Forsberg's
course or in constructive set theory as in Hajime Ishihare's course.
All appeals to the transfinite such as by the law of excluded middle or
by the axiom of choice will be explicitly pointed out. For primers to
constructive mathematics, enjoy
\fixedhref{https://video.ias.edu/members/1213/0318-AndrejBauer}{Andrej
Bauer's 2013 IAS talk}, its \fixedhref{xxx}{written version} or
\fixedhref{xxx}{these course notes}.
}
\medskip
\textbf{Thm.}
For every number~$n \in \NN$, there is a prime larger than~$n$.
{\emph{Proof.} Any prime factor of~$n! + 1$ will do.\par}
\medskip
\pause
{\centering\emph{``Every constructive theorem has a computable witness.''}
\pause
\[
\begin{array}{c@{\qquad}c@{\qquad}c}
\mathrm{HA} \vdash \varphi &\Longrightarrow&
\exists e\_ e \Vdash \varphi \\
\text{\small constructive proof} &\longmapsto&
\text{\small realizer}
\end{array}
\]}
\pause
\vspace*{-2.2em}
\begin{columns}
\begin{column}{0.45\textwidth}
\begin{itemize}
\item Integrated developments \\ \emph{SAT checking, \ldots}
\item Computability theory \\ \emph{induction $\widehat{=}$ recursion, \ldots}
\end{itemize}
\end{column}
\hspace*{-1em}
\begin{column}{0.65\textwidth}
\begin{itemize}
\item Metatheory of constructive systems \\ \emph{provability results, \ldots}
\item Philosophy of proof and computation \\ \emph{realizability in the real world, \ldots}
\end{itemize}
\end{column}
\end{columns}
\grayline
\pause
\justifying
\textbf{Thm.} Every infinite sequence~$\alpha : \NN \to \NN$ is \emph{good}
in that there are numbers~$i < j$ such that~$\alpha(i) \leq \alpha(j)$.
{\emph{Proof.} By~\badbox{\textsc{lem}}, there is a minimal value~$\alpha(i)$.
Set~$j \defeq i + 1$.\par}
{\centering\emph{``\textnormal{Every} theorem has a computable* witness.''} \\ \scriptsize
* with monadic side effects\par}
\end{frame}}
% \includegraphics[width=3cm]{lovelace-babbage}
% \includegraphics[width=3cm]{first-program}
\addtocounter{framenumber}{-1}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\includegraphics[height=\paperheight,valign=t]{ada-lovelace}\includegraphics[width=8cm,valign=t]{first-program}\end{minipage}}
\begin{frame}[plain]
\vspace*{6cm}\hspace*{6cm}\begin{minipage}{4.7cm}
\huge\hil{Ada Lovelace},
\Large
the world's first \\
computer programmer
\medskip
* 1815 \ \ † 1852
\end{minipage}
\jnote{1}{
This year we will celebrate the 207th birthday of Ada Lovelace, pioneer in
computing.
It is astonishing what she started and what long way we have come!
Perhaps you would enjoy the graphic novel \emph{The Thrilling Adventures of
Lovelace and Babbage} in her honor.
}
\end{frame}}
\section{Realizability theory}
\begin{frame}
\centering\bigskip
\includegraphics[height=9.5em]{turing-machine}
\medskip
\large Lecture I: \\
\hil{Realizability theory}
\normalsize
\emph{for extracting programs from constructive proofs}
\jnote{1}{
Monika Seisenberger has
\fixedhref{https://www.proofsociety.org/wp-content/uploads/2018/09/ProgramExtraction_slides.pdf}{many
and more detailed} slides on this topic.
For a written primer to realizability theory, see
\fixedhref{http://math.andrej.com/asset/data/c2c.pdf}{Andrej Bauer's course
notes} and the notes by
\fixedhref{https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf}{Thomas
Streicher}.
}
\end{frame}
\begin{frame}{Heyting arithmetic}
The \hil{language of arithmetic} has
\begin{itemize}
\item as its single sort: $N$
\item as function symbols: $0$, $S$, $+$, $\cdot$
\item as its single relation symbol: $=$
\end{itemize}
\hil{Heyting arithmetic} has as axioms (the universal closure of)
\begin{align*}
&&& \neg(0 = Sx) \\
&&& S(x) = S(y) \Rightarrow x = y \\
x + 0 &= x &&&
x \cdot 0 &= 0 \\
x + S(y) &= S(x+y) &&&
x \cdot S(y) &= (x \cdot y) + x
\end{align*}
together with the \hil{induction scheme} (one axiom for each
formula~$\varphi$)
\[
\varphi(0) \wedge \bigl(\forall x\?N\_ \varphi(x) \Rightarrow
\varphi(S(x))\bigr) \quad\Longrightarrow\quad \forall x\?N\_ \varphi(x)
\]
and the rules of \hil{sequence calculus}.
\jnote{1}{
Heyting arithmetic is a convenient base theory for a constructive analysis
of arithmetic. It has exactly the same axioms as Peano arithmetic, only
that HA is set in intuitionistic logic while PA adds the law of excluded
middle.
As is common, we define negation~``$\neg\varphi$'' as a shorthand for the
implication~``$\varphi \Rightarrow \bot$''.
HA is often expanded to HA\textsuperscript{$\omega$}, \emph{higher-order
Heyting arithmetic}, which includes sorts, term constructors and
appropriate rules for function types such as~$N^N$ and $N^{(N^N)}$.
In its original form, realizability theory is only concernced with
extracting computational witnesses from HA-proofs; however it is fruitfully
extended to all of~HA\textsuperscript{$\omega$}, and we will also glimpse
into this higher-order extension. (NB: HA\textsuperscript{$\omega$} is
conservative over~HA, and one way to show this is by realizability.)
}
\end{frame}
\begin{frame}{Sequence calculus}
\begin{center}
\vspace{-0.5em}
\phantom{a}\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}\UnaryInfC{$\varphi \seq{\vec x} \varphi$}\DisplayProof\hfill
\AxiomC{$\varphi \seq{\vec x} \psi$}\UnaryInfC{$\varphi[\vec s/\vec x]
\seq{\vec y} \psi[\vec s/\vec x]$}\DisplayProof\hfill
\AxiomC{$\varphi \seq{\vec x} \psi$}\AxiomC{$\psi \seq{\vec x}
\chi$}\BinaryInfC{$\varphi \seq{\vec x} \chi$}\DisplayProof
\phantom{a}\hfill
\bigskip\medskip
\phantom{a}\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}\UnaryInfC{$\varphi \seq{\vec x} \top$}\DisplayProof\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}\UnaryInfC{$\varphi \wedge \psi \seq{\vec x} \varphi$}\DisplayProof\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}\UnaryInfC{$\varphi \wedge \psi \seq{\vec x} \psi$}\DisplayProof\hfill
\AxiomC{$\varphi \seq{\vec x} \psi$}\AxiomC{$\varphi \seq{\vec x} \chi$}\BinaryInfC{$\varphi \seq{\vec x} \psi \wedge \chi$}\DisplayProof
\phantom{a}\hfill
\bigskip\medskip
\phantom{a}\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}\UnaryInfC{$\bot \seq{\vec x} \varphi$}\DisplayProof\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}\UnaryInfC{$\varphi \seq{\vec x} \varphi \vee \psi$}\DisplayProof\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}\UnaryInfC{$\psi \seq{\vec x} \varphi \vee \psi$}\DisplayProof\hfill
\AxiomC{$\varphi \seq{\vec x} \chi$}\AxiomC{$\psi \seq{\vec x} \chi$}\BinaryInfC{$\varphi \vee \psi \seq{\vec x} \chi$}\DisplayProof
\phantom{a}\hfill
\bigskip\medskip
\phantom{a}\hfill
\Axiom$\varphi \wedge \psi\ \fCenter\seq{\vec x} \chi$
\doubleLine
\UnaryInf$\varphi\ \fCenter\seq{\vec x} \psi \Rightarrow \chi$
\DisplayProof
\phantom{a}\hfill
\bigskip\medskip
\phantom{a}\hfill
\Axiom$\varphi\ \fCenter\seq{\vec x, y} \psi$
\doubleLine
\UnaryInf$\exists y\?Y\_\! \varphi\ \fCenter\seq{\vec x} \psi$
\DisplayProof
{\tiny ($y$ not occurring in~$\psi$)}
\hfill
\Axiom$\varphi\ \fCenter\seq{\vec x, y} \psi$
\doubleLine
\UnaryInf$\varphi\ \fCenter\seq{\vec x\phantom{, y}} \forall y\?Y\_\! \psi$
\DisplayProof
{\tiny ($y$ not occurring in~$\varphi$)}
\hfill\phantom{a}
\phantom{a}\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}
\UnaryInfC{$\top \seq{x} x = x$}
\DisplayProof
\hfill
\AxiomC{$\phantom{\seq{\vec x}}$}
\UnaryInfC{$(\vec x = \vec y) \wedge \varphi \seq{\vec z} \varphi[\vec y/\vec x]$}
\DisplayProof
\hfill\phantom{a} \\[0.5em]
(``$\vec x = \vec y\,$'' is short for~``$x_1 = y_1 \wedge \cdots \wedge x_n =
y_n$''.)
\end{center}
\end{frame}
\newcommand{\realizes}{\Vdash}
\begin{frame}{Number realizability}
\jnote{1}{
A statement~$\varphi$ is \emph{realizable}, written~``$\realizes\varphi$'',
iff it has a \emph{realizer}, a number~$e \in \NN$ such that~$e \realizes
\varphi$. The recursive rules governing which numbers~$e$ are deemed to be
a realizer of~$\varphi$ make use of \emph{Kleene's original partial combinatory
algebra}, the natural numbers equipped with the following partial binary
operation~$({\cdot})$: $e \cdot n$ is the result of applying the
input~$n$ to the~$e$-th Turing machine (in some effective enumeration of all
Turing machines). We write~``$e \cdot n \downarrow$'' to signify that this
computation terminates.
Instead of Turing machines, we can also study other deterministic models of
computation by using different partial combinatory algebras, or even
nondeterministic and stateful models by a recent
\fixedhref{https://rosstate.org/publications/effectful/effectful-mfps19.pdf}{tantalizing
generalization} due to Liron Cohen and her coauthors Sofia Abreu Faro and
Ross Tate.
Realizability theory provides one way of formalizing the informal
Brouwer--Heyting--Kolmogorov interpretation of constructive mathematics.
For instance, that interpretation states that a witness of an
implication~$\varphi \Rightarrow \psi$ is a ``method'' for transforming
witnesses for~$\varphi$ into witnesses for~$\psi$. Realizability spells out
what ``method'' should mean: Turing machine.
}
\jnote{2}{
The clauses for disjunction and existential quantification require pairing
and unpairing. Given two numbers~$a$ and~$b$, there is a Turing
machine~$p_{a,b}$ which outputs~$a$ or~$b$ depending on whether its input
is zero or not zero. By~$\pi_1$ and~$\pi_2$, we mean (indices of) Turing
machines which, when called on input (an index of)~$p_{a,b}$, extract~$a$
repectively~$b$ by simulating its input on the input~$0$ or~$1$.
The soundness theorem is proven by an instructive induction on the
structure of~HA-proofs, verifying that if HA proves a sequent~$\varphi
\seq{\vec x} \psi$, then there is a realizer for~$\forall x_1\_ \ldots
\forall x_n\_ (\varphi \Rightarrow \psi)$. The core idea of the proof is to
verify that every axiom and every rule of~HA is realized. In this way,
computational content of every axiom and every rule is explicated.
For instance, the statement (with no free variables)
\[ \bot \Rightarrow \varphi \]
is realized by any number~$e \in \NN$ such that for every~$r \in \NN$
with~$r \realizes \varphi$ (this condition is never satisfied), $e \cdot r
\downarrow$ and~$e \cdot r \realizes \varphi$, so by any number whatsoever.
}
\jnote{3}{
In the form ``$(\text{HA} \vdash \varphi) \Rightarrow
(\realizes\varphi)$'', the soundness theorem can be stated and proved in
most contexts in which the natural numbers exist as a complete entity, such
as constructive or classical set or type theories.
But in a sense, this is misleading: The mapping from proofs to realizers is
a computationally simple syntactical transformation. As such, already PRA
can prove the soundness theorem if we formulate it as~``$(\text{HA} \vdash
\varphi) \Rightarrow (\exists e\_ \text{HA} \vdash (e\realizes\varphi))$''.
NB: Some formulations of realizability state the clauses for disjunction
and existential quantification in a slighter simpler way, directly using
pairing and unpairing functions on the naturals. The price for this
simplification is that then the soundness theorem has to be formulated
as``$(\text{HA} \vdash \varphi) \Rightarrow (\exists e\_ \text{HA} \vdash
(e \realizes(\top \Rightarrow \varphi)))$''.
}
\vspace*{-1em}
\begin{changemargin}{-1.5em}{-0.5em}
\begin{tabbing}
$e \models (\forall f\?\NN^\NN\_ \varphi(n))$ \= \kill
$e \realizes s = t$ \> iff $s = t$. \\
$e \realizes \top$ \> iff true. \\
$e \realizes \bot$ \> iff false. \\
$e \realizes (\varphi \wedge \psi)$ \> iff~$\pi_1 \cdot e \downarrow$
and~$\pi_2 \cdot e \downarrow$ and $\pi_1 \cdot e \realizes \varphi$
and~$\pi_2 \cdot e \realizes \psi$. \\
$e \realizes (\varphi \vee \psi)$ \> iff~$\pi_1 \cdot e \downarrow$
and~$\pi_2 \cdot e \downarrow$ and \\ \> \qquad if~$\pi_1 \cdot e = 0$
then~$\pi_2 \cdot e \realizes
\varphi$, and \\ \> \qquad if~$\pi_1 \cdot e \neq 0$ then~$\pi_2 \cdot e \realizes \psi$. \\
$e \realizes (\varphi \Rightarrow \psi)$ \> iff for every~$r \in \NN$
such that~$r \realizes \varphi$, $e \cdot r \downarrow$ and~$e \cdot r \realizes \psi$. \\
$e \realizes (\forall n\?N\_ \varphi(n))$ \> iff for every~$n_0
\in \NN$, $e \cdot n_0 \downarrow$ and~$e \cdot n_0 \realizes \varphi(n_0)$. \\
$e \realizes (\exists n\?N\_ \varphi(n))$ \> iff~$\pi_1 \cdot e
\downarrow$ and~$\pi_2 \cdot e \downarrow$
and~$\pi_2 \cdot e \realizes \varphi(\pi_1 \cdot e)$. \\
$e \realizes (\forall f\?N^N\_ \varphi(f))$ \> iff for every~$f_0
: \NN \to \NN$ and every~$r_0 \in \NN$ such that \\ \> \qquad $f_0$ is computed by the~$r_0$-th
machine, \\ \> \qquad
$e \cdot r_0 \downarrow$ and~$e \cdot r_0 \realizes \varphi(f_0)$. \\
$e \realizes (\exists f\?N^N\_ \varphi(f))$ \> iff~$\pi_1 \cdot e \downarrow$
and~$\pi_2 \cdot e \downarrow$ and
the $(\pi_1 \cdot e)$-th machine \\ \> \qquad computes a function~$f_0 : \NN \to \NN$
and $\pi_2 \cdot e \realizes \varphi(f_0)$.
\end{tabbing}\end{changemargin}
\mbox{\textbf{Thm.} If~$\text{HA} \vdash \varphi$, then there is a
number~$e \in \NN$ such that~\only<1-2>{$e \realizes
\varphi$}\only<3>{$\text{HA} \vdash (\underline{e} \realizes \varphi)$}.}
\end{frame}
\newcommand{\expl}[2]{
\justifying
``$\realizes \!\text{\normalnumber{#1}}$'' amounts to: #2
}
\newcommand{\qswitch}[3]{\only<1-#1>{\includegraphics[height=0.7em]{question-mark}}\only<#2->{#3}}
\newcommand{\ccmark}{\good{\cmark}}
\newcommand{\cxmark}{\bad{\xmark}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{0.00cm}\hfill\mbox{\includegraphics[width=0.2\textwidth]{turing-machine}\;\;}\end{minipage}}
\begin{frame}{Exploring the realizability model}
\jnote{5}{
The statement that every function~$\NN \to \NN$ is computable by a Turing
machine (or equivalently, by a lambda term) is known as the \emph{formal
Church--Turing thesis}. It is an example of a statement which is realizable
but not provable in~HA\textsuperscript{$\omega$}.
Many of the curious properties of the realizability model follow from the
formal Church--Turing thesis. In fact, a slight generalization called the
\emph{extended Church thesis} suffices to completely characterize the
(provably) realizable statements:
\[ \text{HA+ECT} \vdash \varphi \quad\text{iff}\quad
\text{HA} \vdash (\realizes \varphi). \]
In the realizability model built using lambda terms instead of Turing
machines, the formal Church--Turing thesis fails. This is because of
changed calling conventions: In the model built using lambda terms, a
realizer for a statement of the form~``$\forall f\?N^N\_ \varphi(f)$'' is a
lambda term~$e$ such that for every lambda term~$r$ computing a
function~$f : \NN \to \NN$, the term $er$ is a realizer for~$\varphi(f)$.
However, the term~$e$ cannot inspect the form (``source code'') of its
argument.
}
\jnote{6}{
Statement~5 is not a statement in the language of~HA or
of~HA\textsuperscript{$\omega$}, but in an extension in which we can also
support quotients (to make sense of the construction of the reals using
equivalence classes of Cauchy sequences) or powersets (to support the
construction using Dedekind cuts). A proper interpretation is possible in
the category of assemblies or in the ef{}fective topos.
An exposition of this continuity phenomenon is provided in
\fixedhref{https://arxiv.org/pdf/2204.00948.pdf}{this survey paper}
(Example~6 there).
}
\jnote{7}{
By \emph{Markov's principle}, we mean the statement
\[ \forall f\?N^N\_ (\neg\neg(\exists n\?N\_ f(n) = 0)) \Rightarrow
(\exists n\?N\_ f(n) = 0). \]
By the clauses for implication and negation, a number~$e$ is a realizer for
a negated statement~$\neg\psi$ iff there is no realizer for~$\psi$:
\begin{align*}
e \realizes \neg\psi &\quad\text{iff}\quad
\text{for every~$r \in \NN$ such that~$r \realizes \psi$, $e \cdot r
\downarrow$ and~$e \cdot r \realizes \bot$} \\
&\quad\text{iff}\quad \text{for every~$r \in \NN$ such that~$r \realizes \psi$, falsum holds} \\
&\quad\text{iff}\quad \text{there is no number~$r \in \NN$ such that~$r \realizes \psi$} \\
&\quad\text{iff}\quad \text{$\psi$ is not realized}
\end{align*}
In particular, if there exists a realizer for a negated statement at all,
every number whatsoever is a realizer. As a consequence, \emph{realizers for
negated statements are never informative;} and a number~$e$ is a realizer
for~$\neg\neg\varphi$ iff~$\varphi$ is \emph{not~not} realizable. Hence a
realizer for~$\neg\neg\varphi$ encodes the mere promise that somewhere,
there is a realizer for~$\varphi$, without giving any indication how to
find it.
}
\jnote{8}{
By \emph{countable choice}, we mean the statement
\[ (\forall x\?N\_ \exists y\?A\_ \varphi(x,y)) \Longrightarrow
(\exists f\?A^N\_ \forall x\?N\_ \varphi(x,f(x))). \]
Up to some repackaging, this statement is realized by the identity machine
which simply outputs its input unchanged.
Choice for higher type fails in the realizability model. For instance, the
statement
\[ (\forall f\?N^N\_ \exists y\?A\_ \varphi(f,y)) \Longrightarrow
(\exists \theta\?A^{N^N}\_ \forall f\?N^N\_ \varphi(f,\theta(f))) \]
is not realized. A realizer for the antecedent is a machine which,
given an index for a Turing machine computing a total function~$f : \NN \to
\NN$, produces a code for a suitable element~$y$. However, this element~$y$
might not only depend on the extensional input/output behavior of~$f$, but
also on the specific index (source code), hence wouldn't describe an actual
function on the set of computable functions~$\NN \to \NN$.
This issue does not arise with countable choice, as natural numbers have
unique codes.
}
\jnote{9}{
Similar to Statement~5, Statement~8 can only be formulated in an extension
of the formal language used here.
It expresses that, up to unique isomorphism, there is just one model of
Heyting arithmetic, namely the standard model. This is in stark contrast
with the situation in classical mathematics, where Gödel's completeness
theorem/Henkin term models can be used to concoct a host of nonstandard
models.
As a consequence, Peano arithmetic is ``quasi-inconsistent'' from the point
of view of the realizability model, as it is consistent (being
equiconsistent with HA) but does not admit a model (every model of PA is
also a model of HA, but HA only has one model, and this does not validate
the PA-theorem ``every Turing machine terminates or does not terminate'').
Pointers to relevant literature are in
\fixedhref{https://arxiv.org/pdf/2204.00948.pdf}{this survey paper}
(Example~8 there). Also see
\fixedhref{https://www.ps.uni-saarland.de/Publications/documents/HermesKirst_2022_An-Analysis.pdf}{the
2022 paper by Marc Hermes and Dominik Kirst}, particularly also the final
paragraph of their Section~8.1 which alludes to a result in a different
direction.
}
\jnote{10}{
As the examples illustrate, realizability and truth do not at all coincide:
There are many statements which are realizable but not true from the point of
view of classical mathematics (such as the formal Church--Turing thesis)
and vice versa (such as the statement that every function~$\NN \to \NN$ has
a zero or not).
Within the realizability model, the situation is radically different.
For every statement~$\varphi$, the statement~``$\varphi \Leftrightarrow
(\realizes \varphi)$'' is realizable.
The multiverse of models of constructive mathematics can be explored from
the point of view of any base model, and from the point of view of the
realizability model it looks quite different than from the point of view of
classical mathematics.
}
\medskip
\medskip
\begin{tabular}{@{\!\!\!\!\!\!}l@{\,}llp{1.8cm}}
\toprule
& statement & classical? & realizable? \\
\midrule
\normalnumber{1} & Every number is prime or not prime. & \ccmark{}
(trivially) & \ccmark \\
\normalnumber{2} & After every number there is a prime. & \ccmark & \ccmark \\
\normalnumber{3} & Every map $\NN \to \NN$ has a zero or not. & \ccmark{} (trivially) & \cxmark \\
\normalnumber{4} & Every map $\NN \to \NN$ is computable. & \cxmark &
\qswitch{4}{5}{\ccmark}\only<1-4>{\,} \visible<5->{(trivially)} \\
\normalnumber{5} & Every map $\RR \to \RR$ is continuous. & \cxmark &
\qswitch{5}{6}{\ccmark{} (if MP)} \\
\normalnumber{6} & Markov's principle holds. & \ccmark{} (trivially) &
\qswitch{6}{7}{\ccmark{} (if MP)} \\
\normalnumber{7} & Countable choice holds. & \ccmark &
\qswitch{7}{8}{\ccmark{} (always!)} \\
\normalnumber{8} & Heyting arithmetic is categorical. & \cxmark &
\qswitch{8}{9}{\ccmark{} (if MP)} \\
\normalnumber{9} & A statement holds iff it is realized. & \cxmark &
\qswitch{9}{10}{\ccmark} \\
\bottomrule
\end{tabular}
\medskip
\only<1>{\color{white}There is a machine which determines of any given
number whether it is prime or not. \\\ \\\ }
\only<2>{\expl{1}{There is a machine which determines of any given
number whether it is prime or not. \\\ \\\ }}
\only<3>{\expl{2}{There is a machine which, given a number~$n$, computes a
prime larger than~$n$. \\\ \\\ }}
\only<4>{\expl{3}{There is a machine which, given a machine
computing a map~$f : \NN \to \NN$, determines whether~$f$ has a
zero or not. \\\ \\\ }}
\only<5>{\expl{4}{There is a machine which, given a machine
computing a map~$f : \NN \to \NN$, outputs a machine
computing~$f$. \\\ \\\ }}
\only<6>{\ \\\ \\\ \\\ }
\only<7>{\expl{6}{There is a machine which, given a machine
computing a map~$f : \NN \to \NN$ and given the promise that it is \notnot
the case that~$f$ has a zero, determines a zero of~$f$.}}
\only<8>{\expl{7}{\justifying There is a machine which, given a machine
computing for every~$x \in \NN$ some~$y \in A$ together with a realizer
of~$\varphi(x,y)$, outputs a machine computing a suitable choice
function~$\NN \to A$.}}
\only<9>{\ \\\ \\\ \\\ }
\end{frame}}
\begin{frame}{Metatheory of Heyting arithmetic}
\jnote{1}{
Variants of the realizability model can be used to establish several
metatheoretic properties of Heyting arithmetic. For the second and third
properties, the keyword is ``realizability with proof''; for the fourth,
using the variant of realizability built using System~T terms instead of
Turing machines.
}
\begin{enumerate}
\item \hil{Unprovability results:}
\medskip
There are instances of~\badbox{\textsc{lem}} which HA does not prove,
such as ``every Turing machine terminates or does not terminate''.
\bigskip
\item \hil{Disjunction property:}
\medskip
If HA proves~$\varphi \vee \psi$, then HA
proves~$\varphi$ or HA proves~$\psi$.
\bigskip
\item \hil{Existence property:}
\medskip
If HA proves~$\exists n\?N\_ \varphi(n)$, then there is a number~$n_0 \in
\NN$ such that HA proves~$\varphi(\underline{n_0})$.
\bigskip
\item \hil{Growth rate:}
\medskip\justifying
If HA proves~$\forall x\?N\_ \exists y\?N\_ \varphi(x,y)$,
then there exists a \hil{higher primitive recursive} function $f_0 : \NN
\to \NN$ such that for all~$x_0 \in \NN$, HA proves
$\varphi(\underline{x_0}, \underline{f_0(x_0)})$.
\end{enumerate}
\end{frame}
\begin{frame}{Range of machine models}
\jnote{1-}{
Infinite time Turing machines were introduced
\fixedhref{https://arxiv.org/abs/math/9808093}{by Joel David Hamkins and
Andy Lewis}. Unlike ordinary Turing machines, they can carry out ``more
than infinitely many computational steps''. Where an ordinary Turing
machine fails to terminate, an infinite time Turing machine is put on
day~$\omega$ into a special limit state and can then meaningfully continue.
All functions in Gödel's System~T are unconditionally total. Hence
unbounded search cannot be implemented in System~T.
The idea to apply realizability to machines in the real world is
\fixedhref{http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/}{due to Andrej Bauer}.
}
\begin{enumerate}
\item \hil{Turing machines}
\visible<2->{``Every map $\NN \to \NN$ is computable'' is realized by
\textsf{cat}.}
\medskip
\item \hil{Untyped lambda calculus}
\visible<3->{``Every map $\NN \to \NN$ is computable'' is \emph{not}
realized.}
\medskip
\item \hil{Infinite-time Turing machines}