-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathvideoDepthEstimation.py
67 lines (51 loc) · 1.67 KB
/
videoDepthEstimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2
import pafy
import tensorflow as tf
import numpy as np
from hitnet import HitNet, ModelType, draw_disparity, draw_depth, CameraConfig
# Initialize video
# cap = cv2.VideoCapture("video.mp4")
videoUrl = 'https://youtu.be/Yui48w71SG0'
videoPafy = pafy.new(videoUrl)
print(videoPafy.streams)
cap = cv2.VideoCapture(videoPafy.getbestvideo().url)
# Select model type
# model_type = ModelType.middlebury
# model_type = ModelType.flyingthings
model_type = ModelType.eth3d
if model_type == ModelType.middlebury:
model_path = "models/middlebury_d400.pb"
elif model_type == ModelType.flyingthings:
model_path = "models/flyingthings_finalpass_xl.pb"
elif model_type == ModelType.eth3d:
model_path = "models/eth3d.pb"
# Store baseline (m) and focal length (pixel)
camera_config = CameraConfig(0.1, 320)
max_distance = 5
# Initialize model
hitnet_depth = HitNet(model_path, model_type, camera_config)
cv2.namedWindow("Estimated depth", cv2.WINDOW_NORMAL)
while cap.isOpened():
try:
# Read frame from the video
ret, frame = cap.read()
if not ret:
break
except:
continue
# Extract the left and right images
left_img = frame[:,:frame.shape[1]//3]
right_img = frame[:,frame.shape[1]//3:frame.shape[1]*2//3]
color_real_depth = frame[:,frame.shape[1]*2//3:]
# Estimate the depth
disparity_map = hitnet_depth(left_img, right_img)
depth_map = hitnet_depth.get_depth()
color_disparity = draw_disparity(disparity_map)
color_depth = draw_depth(depth_map, max_distance)
cobined_image = np.hstack((left_img,color_real_depth, color_depth))
cv2.imshow("Estimated depth", cobined_image)
# Press key q to stop
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()