-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinear Programming—Simplex Method.cpp
99 lines (99 loc) · 2.79 KB
/
Linear Programming—Simplex Method.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/* Linear programming by simplex method */
#include <iostream>
#include <iomanip>
#define ND 2
#define NS 2
#define N (ND+NS)
#define N1 (NS*(N+1))
using namespace std;
void init(float x[],int n){
int i=0;
for (;i<n;i++) x[i] = 0;
}
int main(){
int i,j,k,kj,ki,bas[NS];
float a[NS][N+1],c[N],cb[NS],th[NS],
x[ND],cj,z,t,b,min,max;
/* Initializing the arrays to zero */
init(c,N); init(cb,NS);
init(th,NS); init(x,ND);
for (i=0;i<NS;i++) init(a[i],N+1);
/* Now set coefficients for slack
variables equal to one */
for (i=0;i<NS;i++) a[i][i+ND] = 1.0;
/* Now put the slack variables in the basis */
for (i=0;i<NS;i++) bas[i] = ND+i;
/*Now get the constraints
and the objective function */
cout << "Enter the constraints" << endl;
for (i=0;i<NS;i++){
for (j=0;j<ND;j++)
cin >> a[i][j];
cin >> a[i][N];
}
cout << "Enter the objective function"
<< endl;
for (j=0;j<ND;j++)
cin >> c[j];
cout << fixed;
/*Now calculate cj and identify the incoming variable */
while (1){
max = 0; kj = 0;
for (j=0;j<N;j++){
z = 0;
for (i=0;i<NS;i++)
z += cb[i]*a[i][j];
cj = c[j]-z;
if(cj > max){
max = cj; kj = j;}
}
/* Apply the optimality test */
if(max <= 0) break;
/* Now calculate thetas */
max = 0;
for (i=0;i<NS;i++)
if(a[i][kj]!= 0){
th[i] = a[i][N]/a[i][kj];
if(th[i] > max) max=th[i];
}
/* Now check for unbounded soln. */
if(max <= 0){
cout << "Unbounded solution";
return 1;
}
/*Now search for the outgoing variable */
min = max; ki = 0;
for (i=0;i<NS;i++)
if ((th[i] < min)&&(th[i]!= 0)){
min = th[i]; ki = i;
}
/*Now a[ki][kj] is the key element*/
t = a[ki][kj];
/*Divide the key row by key element*/
for (j=0;j<N+1;j++) a[ki][j] /= t;
/*Make all other elements of key column zero */
for (i=0;i<NS;i++)
if(i!= ki){
b = a[i][kj];
for (k=0;k<N+1;k++)
a[i][k]-=a[ki][k]*b;
}
cb[ki] = c[kj];
bas[ki] = kj;
}
/* Now calculating the optimum value */
for (i=0;i<NS;i++)
if ((bas[i] >= 0) && (bas[i]<ND))
x[bas[i]] = a[i][N];
z = 0;
for (i=0;i<ND;i++)
z += c[i]*x[i];
for (i=0;i<ND;i++)
cout << "x[" << setw(3) << i+1 << "] = "
<< setw(7) << setprecision(2)
<< x[i] << endl;
cout << "Optimal value = "
<< setw(7) << setprecision(2)
<< z << endl;
return 0;
}