-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
59 lines (56 loc) · 3.19 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import random
import numpy as np
# random.seed(42)
# np.random.seed(42)
torch.manual_seed(42)
default_config = {
'comet_api_key_file_path': './comet_api_key.txt',
'device': 'cuda',
'experiment_name': 'undefined',
'comet_project_name': 'arabic-did-paper',
'datasets_dir': r'../datasets',
'datasets': ['Shami'],
'training': {'back_prop_every_n_batches': 1, 'train_batch_size': 80, 'n_train_workers': 8,
'log_every_n_batches': 10,
'training_epochs': 15, 'eval_every_n_batches': 100, 'shuffle_train_eval': False,
'checkpoint_best': True, 'dataset_size': 1.0},
'tune': {'tuning_method': 'no_search', 'discriminating_metric': 'micro_average_accuracy',
'discriminating_metric_mode': 'max', 'max_t': 1000000, 'n_samples': 2,
'resources_per_trial': {'cpu': 2, 'gpu': 1}, 'working_dir': '../ray', 'resume': False},
'evaluation': {'metrics': ['per_class_precision', 'per_class_recall', 'per_class_f1', 'micro_average_accuracy',
'macro_average_precision', 'macro_average_recall', 'macro_average_f1', 'eval_loss',
'in_out', 'cm'],
'eval_batch_size': 80, 'n_eval_workers': 8},
'penalize_all_steps': True,
'optimizer': {'name': 'adam', 'lr': 5.555328569281413E-4, 'betas': (0.9, 0.999), 'eps': 1e-08,
'weight_decay': 1.791070176717058E-6},
'preprocessing': {'normalize': True, 'max_rep': 0, 'tokenizer': 'standard_tokenizer', 'max_seq_len': 300},
'model': 'awd_rnn',
'load_checkpoint': 'eval-awd-lstm9c9e86e2006b4386b9d9662df34b0427.pt',
'simple_gru': {'hidden_size': 64, 'num_layers': 2, 'dropout': 0.005, 'bidirectional': True,
'embedding_size': 128},
'simple_lstm': {'hidden_size': 394, 'num_layers': 2, 'dropout': 0.005, 'bidirectional': False,
'embedding_size': 490},
'awd_rnn': {'hidden_size': 608, 'num_layers': 4, 'dropouth': 0.33342707216370937, 'dropouti': 0.20239988986112784,
'dropoute': 0.024969153615953168, 'wdrop': 0,
'dropouto': 0.0, 'ar_alpha': 6.782895014034089,
'embedding_size': 492},
'vdcnn': {'embedding_size': 416, 'dropout': 0.09100404232504053, 'k': 6, 'conv1_nblocks': 2, 'conv2_nblocks': 1,
'conv3_nblocks': 1,
'conv4_nblocks': 2,
'conv0_nfmaps': 135, 'conv1_nfmaps': 58, 'conv2_nfmaps': 103, 'conv3_nfmaps': 177, 'conv4_nfmaps': 543,
'dense_nlayers': 1, 'dense_nfeatures': 3515, 'apply_shortcut': True},
'bert': {'hidden_size': 224, 'n_bert_layers': 2, 'n_att_heads': 7, 'intermediate_dense_size': 852,
'hidden_dropout': 0.4362316177107697, 'att_dropout': 0.0239794459965727},
# !!!!! Important note: In old experiments, char_simple was called word !!!!!
'standard_tokenizer': {'tokenization': 'char_simple', 'per_class_vocab_size': 6900},
'youtokentome': {'vocab_size': 31400},
'transformers_tokenizer': {'model': 'bert-base-multilingual-uncased'},
'bert_pretrained': {'model': 'bert-base-multilingual-uncased'},
'labels_to_int': {
'PAL': 0,
'LEB': 1,
'JOR': 2,
'SYR': 3}
}