-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFV_charWise_WENO5LF1d.m
212 lines (184 loc) · 7.09 KB
/
FV_charWise_WENO5LF1d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
function res = FV_charWise_WENO5LF1d(a,q,dx)
% *************************************************************************
%
% Characteristic-wise Finite Volume-1d for the Euler Equations
%
% Based on:
% ---------
% [1] Shu, Chi-Wang. "Essentially non-oscillatory and weighted essentially
% non-oscillatory schemes for hyperbolic conservation laws." Advanced
% numerical approximation of nonlinear hyperbolic equations. Springer,
% Berlin, Heidelberg, 1998. 325-432.
% [2] Jiang, Guang-Shan, and Cheng-chin Wu. "A high-order WENO finite
% difference scheme for the equations of ideal magnetohydrodynamics."
% Journal of Computational Physics 150.2 (1999): 561-594.
%
% coded by Manuel Diaz, 02.10.2012, NTU Taiwan.
% last updated on 2018.06.20, NHRI Taiwan.
% *************************************************************************
%
% Domain cells (I{i}) reference:
%
% | | u(i) | |
% | u(i-1) |___________| |
% |___________| | u(i+1) |
% | | |___________|
% ...|-----0-----|-----0-----|-----0-----|...
% | i-1 | i | i+1 |
% |- +|- +|- +|
% i-3/2 i-1/2 i+1/2 i+3/2
%
% ENO stencils (S{r}) reference:
%
%
% |___________S2__________|
% | |
% |___________S1__________| |
% | | |
% |___________S0__________| | |
% ..|---o---|---o---|---o---|---o---|---o---|...
% | I{i-2}| I{i-1}| I{i} | I{i+1}| I{i+2}|
% -|
% i+1/2
%
%
% |___________S0__________|
% | |
% | |___________S1__________|
% | | |
% | | |___________S2__________|
% ..|---o---|---o---|---o---|---o---|---o---|...
% | I{i-2}| I{i-1}| I{i} | I{i+1}| I{i+2}|
% |+
% i-1/2
%
% WENO stencil: S{i} = [ I{i-2},...,I{i+2} ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NOTE: the reconstruction is performed using characteristic decomposition
% NOTE: Roe averages are assumed for the properties at the cell interface
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global gamma
E = size(q,1); % number of equations
N = size(q,2); % number of nodes
R=3; I=R:(N-R); % R: stencil size
epweno=1E-40;
gamma1 = gamma-1;
qr=zeros(size(q));
ql=zeros(size(q));
LF=zeros(size(q));
res=zeros(size(q));
evr = zeros(3,3,N);
evl = zeros(3,3,N);
% Compute eigenvectors at the cell interfaces
for i = 2:N
% Compute properties at cell interfaces using Roe avegares
r_sqrtl = sqrt(q(1,i-1));
r_sqrtr = sqrt(q(1, i ));
pl = gamma1*(q(3,i-1) - 0.5*(q(2,i-1)^2)/q(1,i-1));
pr = gamma1*(q(3, i ) - 0.5*(q(2, i )^2)/q(1, i ));
r_sq2 = r_sqrtl + r_sqrtr;
u = (q(2,i-1)/r_sqrtl + q(2,i)/r_sqrtr)/r_sq2;
H = (((q(3,i-1)+pl)/r_sqrtl + (q(3,i)+pr)/r_sqrtr))/r_sq2;
c2 = gamma1*(H - 0.5*u^2);
c = sqrt(c2);
% Construct matrix of right eigenvectors
% _ _
% | |
% | 1 1 1 |
% | |
% R = | u-c u u+c |
% | |
% | H-uc u^2/2 H+uc |
% |_ _|
evr(:,:,i) = [...
1 , 1 , 1 ;...
u-c , u , u+c ;...
H-u*c,u^2/2,H+u*c];
% Construct matrix of left eigenvectors
% _ _
% | |
% | uc/(gamma-1)+u^2/2 -c/(gamma-1)-u 1 |
% | |
% R^{-1}=(gamma-1)/(2c^2)*| 2(H-u^2) 2u -2 |
% | |
% | -uc/(gamma-1)+u^2/2 c/(gamma-1)-u 1 |
% |_ _|
evl(:,:,i) = gamma1/(2*c^2)*[...
c*u/gamma1+u^2/2,-(c/gamma1+u), 1 ;...
2*(H-u^2) , 2*u ,-2 ;...
-c*u/gamma1+u^2/2, c/gamma1-u , 1];
end
% compute and store the differences of the cell averages
for i=2:N
dqmh(:,i)=q(:,i)-q(:,i-1); % dq_{i-1/2}
end
% Compute the part of the reconstruction that is stencil-independent
for i=R:N-R+1
qr(:,i-1) = (-q(:,i-2)+7.*(q(:,i-1)+q(:,i))-q(:,i+1))/12.;
ql(:, i ) = qr(:,i-1);
end
% Produce the WENO reconstruction
for ip=1:E
% Project the difference of the cell averages to the 'm'th
% characteristic field: qs
for m2 = -2:2
for i = R+1:N-2
qs(m2+3,i) = 0;
for e=1:E
qs(m2+3,i) = qs(m2+3,i) + evl(ip,e,i)*dqmh(e,i+m2);
end
end
end
% the reconstruction
for idx=1:2
% idx=1: construct hn (qr)
% idx=2: construct hp (ql)
im=(-1)^(idx+1);
i1=im+R; in1=-im+R; in2=-2*im+R;
for i=R:N-R+1
t1=im*(qs(in2,i)-qs(in1,i));
t2=im*(qs(in1,i)-qs(R, i ));
t3=im*(qs(R, i )-qs(i1,i ));
IS1=13.*t1^2+3.*( qs(in2,i)-3.*qs(in1,i))^2;
IS2=13.*t2^2+3.*( qs(in1,i)+ qs(R, i ))^2;
IS3=13.*t3^2+3.*(3.*qs(R, i )- qs(i1,i ))^2;
IS1=(epweno+IS1)^2;
IS2=(epweno+IS2)^2;
IS3=(epweno+IS3)^2;
s1 =IS2*IS3;
s2 =6.*IS1*IS3;
s3 =3.*IS1*IS2;
t0 =1./(s1+s2+s3);
s1 =s1*t0;
s3 =s3*t0;
h(idx,i) = (s1*(t2-t1)+(0.5*s3-0.25)*(t3-t2))/3.;
end % loop over interfaces
end % loop over which side of interface
% Project to the physical space:
for e = 1:E
for i=R:N-R+1
qr(e,i-1) = qr(e,i-1) + evr(e,ip,i)*h(1,i);
ql(e, i ) = ql(e, i ) + evr(e,ip,i)*h(2,i);
end
end
end
%% Compute finite volume residual term, df/dx.
LF(:,I) = 0.5*(F(qr(:,I))+F(ql(:,I+1))-abs(a).*(ql(:,I+1)-qr(:,I))); % Lax friedrichs flux
% for j = I % for all faces of the domain cells
% res(:, j ) = res(:, j ) + LF(:,j)/dx;
% res(:,j+1) = res(:,j+1) - LF(:,j)/dx;
% end % or alternatively :
res(:,I) = (LF(:,I)-LF(:,I-1))/dx; % L = -df(q)/dx.
% Flux contribution of the LEFT MOST FACE: left face of cell j=3.
res(:,3) = res(:,3)-LF(:,3)/dx;
% Flux contribution of the RIGHT MOST FACE: right face of cell j=nx-2.
res(:,N-2)=res(:,N-2)+LF(:,N-2)/dx;
end
% Compute flux vector
function flux = F(q)
global gamma
% primary properties
rho=q(1,:); u=q(2,:)./rho; E=q(3,:); p=(gamma-1)*(E-0.5*rho.*u.^2);
% flux vector of conserved properties
flux=[rho.*u; rho.*u.^2+p; u.*(E+p)];
end